Citation: | ATA-UR-RAHMAN, S. A. KHAN, A. QAMAR. Propagation of Ion Solitary Pulses in Dense Astrophysical Electron-Positron-Ion Magnetoplasmas[J]. Plasma Science and Technology, 2015, 17(12): 1000-1005. DOI: 10.1088/1009-0630/17/12/04 |
1 Shapiro S L, Teukolsky S A. 1983, White Dwarfs and Neutron Stars: The Physics of Compact Objects. John Wiley and Sons, New York 2 Koester D, Chanmugam G. 1990, Reports on Progress in Physics, 53: 837 3 Fortov V E, Iakubov I T, Khrapak A G. 2006, Physics of Strongly Coupled Plasma. Clarendon Press, Oxford 4 Vladimirov S V, Tsyhetskiy Yu O. 2011, Physics-Uspekhi, 54: 1243 5 Lai D. 2001, Reviews of Modern Physics, 73: 629 6 Chandrasekhar S. 1931, Philosophical Magazine, 11:592 7 Chandrasekhar S. 1939, An Introduction to the Study of Stellar Structure. The University of Chicago Press,Chicago 8 Mamun A A, Shukla P K. 2010, Physics of Plasmas,17: 104504 9 Rahman A, Mushtaq A, Ali S, et al. 2013, Communications in Theoretical Physics, 59: 479 10 Masood W, Eliasson B. 2011, Physics of Plasmas, 18:034503 11 Kourakis I, Kerr M M, Rahman A. 2013, Journal of Plasma Physics, 79: 1089 12 Rahman A, Ali S, Mirza A M, et al. 2013, Physics of Plasmas, 20: 042305 13 Rees M J. 1983, The Very Early Universe. Cambridge University Press, Cambridge, p.275 14 Burns M L. 1983, Positron-Electron Pairs in Astrophysics. edited by Burns M L, Harding A K, Ramaty R. American Institute of Physics, Melville, NY 15 Ridgers C P, Brady C S, Duclous R, et al. 2012, Physical Review Letters, 108: 165006 16 Lallement R, Welsh B Y, Barstow M A, et al. 2011,Astronomy & Astrophysics, 533: A140 17 Zeba I, Moslem W M, Shukla P K. 2012, Astrophysical Journal, 750: 72 1004 ATA-UR-RAHMAN et al.: Propagation of Ion Solitary Pulses in Dense Astrophysical e-p-i Magnetoplasmas 18 Khan S A. 2012, Astrophysics and Space Science, 340:71 19 Sabry R, Moslem W M, Shukla P K. 2012, Physics of Plasmas, 19: 122903 20 Rahman A, Ali S, Mushtaq A, Qamar A. 2013, Journal of Plasma Physics, 79: 817 21 El-Taibany W F, Mamun A A. 2012, Physical Review E, 85: 026406 22 Manfredi G. 2005, Fields Institute Communications,46: 263 23 Washimi H, Taniuti T. 1966, Physical Review Letters,17: 996 24 Shukla P K, Yu M Y. 1978, Journal of Mathematical Physics, 19: 2506 25 Lu Q M, Lembege B, Tao J B, et al. 2008, Journal of Geophysical Rresearch, 113: A11219 26 Wu M, Lu Q, Huang C, et al. 2010, Journal of Geophysical Rresearch, 115: A10245 27 Wu M, Lu Q, Zhu J, et al. 2013, Plasma Science and Technology, 15: 1 28 Jeffrey A, Kakutani T. 1972, SIAM Review, 14: 582 29 Glenzer S H, Redmer R. 2009, Reviews of Modern Physics, 81: 1625 30 Chabrier G, Douchin F, Potekhin A Y. 2002, Journal of Physics: Condensed Matter, 14: 9133 31 Khan S A. 2013, Astrophysics and Space Science, 343:683
|
[1] | Na LI, Edward HAREFA, Weidong ZHOU. Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(11): 115507. DOI: 10.1088/2058-6272/ac8039 |
[2] | Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1 |
[3] | Jing QI (齐婧), Siqi ZHANG (张思齐), Tian LIANG (梁田), Ke XIAO (肖珂), Weichong TANG (汤伟冲), Zhiyuan ZHENG (郑志远). Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser[J]. Plasma Science and Technology, 2018, 20(3): 35508-035508. DOI: 10.1088/2058-6272/aa9faa |
[4] | Nader MORSHEDIAN. Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)[J]. Plasma Science and Technology, 2017, 19(9): 95501-095501. DOI: 10.1088/2058-6272/aa74c5 |
[5] | WANG Ying (王莹), CHEN Anmin (陈安民), LI Suyu (李苏宇), SUI Laizhi (隋来志), LIU Dunli (刘敦利), LI Shuchang (李舒畅), LI He (李贺), JIANG Yuanfei (姜远飞), JIN Mingxing (金明星). Re-Heating Effect on the Enhancement of Plasma Emission Generated from Fe Under Femtosecond Double-Pulse Laser Irradiation[J]. Plasma Science and Technology, 2016, 18(12): 1192-1197. DOI: 10.1088/1009-0630/18/12/09 |
[6] | SHEN Jie (沈洁), YANG Zhengcai (杨正才), LIU Xiaoliang (刘小亮), SHI Yanchao (史彦超), ZHAO Peixi (赵培茜), SUN Shaohua (孙少华), HU Bitao (胡碧涛). Analysis of Enhanced Laser-Induced Breakdown Spectroscopy with Double Femtosecond Laser Pulses[J]. Plasma Science and Technology, 2015, 17(2): 147-152. DOI: 10.1088/1009-0630/17/2/09 |
[7] | ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06 |
[8] | SUN Duixiong(孙对兄), SU Maogen(苏茂根), DONG Chenzhong(董晨钟), WEN Guanhong(温冠宏). A Comparative Study of the Laser Induced Breakdown Spectroscopy in Single- and Collinear Double-Pulse Laser Geometry[J]. Plasma Science and Technology, 2014, 16(4): 374-379. DOI: 10.1088/1009-0630/16/4/13 |
[9] | ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14 |
[10] | Alexander I. Pushkarev, Yulia I. Isakova. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode[J]. Plasma Science and Technology, 2011, 13(6): 698-701. |
1. | Xiong, S., Yang, N., Guan, H. et al. Combination of plasma acoustic emission signal and laser-induced breakdown spectroscopy for accurate classification of steel. Analytica Chimica Acta, 2025. DOI:10.1016/j.aca.2024.343496 | |
2. | He, Y., Ke, C., Wen, Q. et al. Automatic focusing remote laser induced breakdown spectroscopy analysis of trace elements in steel using support vector machine regression. IEEE Transactions on Instrumentation and Measurement, 2025. DOI:10.1109/TIM.2025.3550229 | |
3. | Xiong, S., Liao, T., Chi, Y. et al. A strategy to reduce spectral intensity uncertainty and predicted content uncertainty of low and medium alloy steel elements. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2024.106919 | |
4. | Li, S., Zheng, R., Deguchi, Y. et al. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys. Plasma Science and Technology, 2023, 25(4): 045510. DOI:10.1088/2058-6272/aca5f4 | |
5. | Zhang, D., Zhang, Z., Zhang, M. et al. Portable nanosecond laser for handheld laser-induced breakdown spectroscopy instruments. Optical Engineering, 2023, 62(3): 36102. DOI:10.1117/1.OE.62.3.036102 | |
6. | Guo, M., Huang, Z., Wang, J. et al. origin Identification of Three Kinds of Dry-cured Ham Based on Laser-induced Breakdown Spectroscopy Technology Combined with Machine Learning Algorithm | [基于激光诱导击穿光谱技术结合机器学习算法的3种干腌火腿产地识别]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(10): 279-285. DOI:10.16429/j.1009-7848.2022.10.030 | |
7. | Lei, B.-Y., Xu, B.-P., Wang, Y.-S. et al. Investigation of the Spectral Characteristics of Laser-Induced Plasma for Non-Flat Samples | [非平坦样品激光诱导等离子体光谱特性研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2022, 42(10): 3024-3030. DOI:10.3964/j.issn.1000-0593(2022)10-3024-07 | |
8. | Cui, M., Guo, H., Chi, Y. et al. Quantitative analysis of trace carbon in steel samples using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2022. DOI:10.1016/j.sab.2022.106398 | |
9. | Zhang, D., Feng, Z., Wei, K. et al. Remote Laser-induced Breakdown Spectroscopy and Its Application (Invited) | [远程激光诱导击穿光谱技术与应用(特邀)]. Guangzi Xuebao/Acta Photonica Sinica, 2021, 50(10): 1030001. DOI:10.3788/gzxb20215010.1030001 | |
10. | Cui, M., Deguchi, Y., Li, G. et al. Determination of manganese in submerged steel using Fraunhofer-type line generated by long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106210 | |
11. | Chang, F., Yang, J., Lu, H. et al. A LIBS quantitative analysis method for samples with changing temperature: Via functional data analysis. Journal of Analytical Atomic Spectrometry, 2021, 36(5): 1007-1017. DOI:10.1039/d0ja00514b | |
12. | Wang, Y., Bu, Y., Cai, Y. et al. Detection of electrolyte elements in human blood based on laser-induced breakdown spectroscopy. Proceedings of SPIE - The International Society for Optical Engineering, 2021. DOI:10.1117/12.2602525 | |
13. | FUGANE, Y., KASHIWAKURA, S., WAGATSUMA, K. Control of laser focal point by using an electrically tunable lens in laser-induced plasma optical emission spectrometry. ISIJ International, 2020, 60(12): 2845-2850. DOI:10.2355/isijinternational.ISIJINT-2020-170 | |
14. | Cui, M., Deguchi, Y., Wang, Z. et al. Signal Improvement for Underwater Measurement of Metal Samples Using Collinear Long-Short Double-Pulse Laser Induced Breakdown Spectroscopy. Frontiers in Physics, 2020. DOI:10.3389/fphy.2020.00237 | |
15. | Rong, K., Wang, Z., Hu, R. et al. Experimental study on mercury content in flue gas of coal-fired units based on laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074010. DOI:10.1088/2058-6272/ab7fbc | |
16. | Shin, S., Moon, Y., Lee, J. et al. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis. Plasma Science and Technology, 2020, 22(7): 074011. DOI:10.1088/2058-6272/ab7d48 | |
17. | Cui, M., Deguchi, Y., Wang, Z. et al. Fraunhofer-type signal for underwater measurement of copper sample using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105873 | |
18. | Cui, M., Deguchi, Y., Yao, C. et al. Carbon detection in solid and liquid steel samples using ultraviolet long-short double pulse laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105839 | |
19. | Wang, Z., Deguchi, Y., Shiou, F. et al. Feasibility investigation for online elemental monitoring of iron and steel manufacturing processes using laser-induced breakdown spectroscopy. ISIJ International, 2020, 60(5): 971-978. DOI:10.2355/isijinternational.ISIJINT-2019-317 | |
20. | Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873 | |
21. | Wang, Y., Bu, Y., Wu, F. et al. Research on LIBS quantitative analysis of heavy metal concentration in polluted water-based on Fourier self-deconvolution method. Proceedings of SPIE - The International Society for Optical Engineering, 2019. DOI:10.1117/12.2544699 |