Advanced Search+
LIU Xiaojun (刘晓军), WANG Lei (王磊), HAO Jie (郝杰), CHU Liqiang (褚立强). Pulsed Plasma Polymerization of Perfluorooctyl Ethylene for Transparent Hydrophobic Thin Coatings[J]. Plasma Science and Technology, 2015, 17(12): 1013-1018. DOI: 10.1088/1009-0630/17/12/06
Citation: LIU Xiaojun (刘晓军), WANG Lei (王磊), HAO Jie (郝杰), CHU Liqiang (褚立强). Pulsed Plasma Polymerization of Perfluorooctyl Ethylene for Transparent Hydrophobic Thin Coatings[J]. Plasma Science and Technology, 2015, 17(12): 1013-1018. DOI: 10.1088/1009-0630/17/12/06

Pulsed Plasma Polymerization of Perfluorooctyl Ethylene for Transparent Hydrophobic Thin Coatings

Funds: supported by the Tianjin Research Program of Application Foundation and Advanced Technology, China (No. 12JCYBJC31700) and the Program for New Century Excellent Talents in University, China (No. NCET-12-1064)
More Information
  • Received Date: January 11, 2015
  • Herein we report on the deposition of transparent hydrophobic thin coatings by radio frequency plasma polymerization (PP) of perfluorooctyl ethylene (PFOE) in both pulsed and continuous wave (CW) modes. The chemical compositions of the resulting PP-PFOE coatings were con?rmed by means of Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The thicknesses and surface morphologies of the coatings were examined using surface plasmon resonance spectroscopy and atomic force microscopy. The surface wetting properties and optical transmittance were measured using a water contact angle goniometer and UV-vis spectroscopy. The FT-IR and XPS data showed that the PP-PFOE coatings deposited in the pulsed mode had a higher retention of CF2 groups compared to those from the CW mode. While the water contact angle of the freshly deposited PP-PFOE from the pulsed mode showed a decrease from 120 degrees to 111 degrees in the first two days, it then remained almost unchanged up to 45 days. The UV-vis data indicated that a PP-PFOE coating 30.6 nm thick had a light transmittance above 90% in the UV and visible ranges. The deposition rates under various plasma conditions are also discussed.
  • 1 Kikuchi Y, Miyatani K, Kobayashi Y, et al. 2012, Jpn.J. Appl. Phys., 51: 05EC02 2 Han L M, Timmons R B, Lee W W. 2000, J. Vac. Sci.Technol. B, 18: 799 3 Bayiati P, Tserepi A, Petrou P S, et al. 2007, Microelectron. Eng., 84: 1677 4 Ha¨ ?opoulos M, Turgeon S, Laroche G, et al. 2005,Plasma Process. Polym., 2: 424 5 Kumar V, Pulpytel J, Rauscher H, et al. 2010, Plasma Process. Polym., 7: 926 6 Wang H, He G, Tian Q. 2012, Appl. Surf. Sci., 258:7219 7 Jafari R, Menini R, Farzaneh M. 2010, Appl. Surf. Sci.,257: 1540 8 Jisr R M, Rmaile H H, Schlenoff J B. 2005, Angew.Chem. Int. Ed., 44: 782 9 Ellinas K, Pujari S P, Dragatogiannis D A, et al. 2014,ACS Appl. Mat. Interfaces, 6: 6510 10 Escobar C A, Zulkifli A R, Faulkner C J, et al. 2011,ACS Appl. Mat. Interfaces, 4: 906 11 Kruszewski K M, Gawalt E S. 2011, Langmuir, 27:8120 12 Henry F, Renaux F, Copp′ ee S, et al. 2012, Surf. Sci.,606: 1825 13 Kylian O, Petr M, Serov A, et al. 2014, Vacuum, 100:57 14 Lau K K S, Lewis H G P, Limb S J, et al. 2001, Thin Solid Films, 395: 288 15 Iwamori S, Tanabe T, Yano S, et al. 2010, Surf. Coat.Technol., 204: 2803 16 Liu D, Martin I T, Fisher E R. 2006, Chem. Phys.Lett., 430: 113 17 Wang J, Song X, Li R, et al. 2012, Appl. Surf. Sci.,258: 9782 18 Favia P. 2012, Surf. Coat. Technol., 211: 50 19 Huang C, Liu C H, Hsu W T, et al. 2010, J. Non-Cryst.Solids, 356: 1791 20 Irzh A, Ghindes L, Gedanken A. 2011, ACS Appl. Mat.Interfaces, 3: 4566 21 Ji Y Y, Kim S S, Kwon O P, et al. 2009, Appl. Surf.Sci., 255: 4575 22 Yasuda T, Okuno T, Miyama M, et al. 1994, J. Polym.Sci. A: Polym. Chem., 32: 1829 23 Favia P, Cicala G, Milella A, et al. 2003, Surf. Coat.Technol., 169-170: 609 24 Sarkar D K, Farzaneh M, Paynter R W. 2010, Appl.Surf. Sci., 256: 3698 25 Cuddy M F, Fisher E R. 2012, ACS Appl. Mat. Interfaces, 4: 1733 26 Yanev V, Krischok S, Opitz A, et al. 2004, Surf. Sci.,566: 1229 27 Yu G Q, Tay B K, Sun Z. 2005, Surf. Coat. Technol.,191: 236 28 Huang H, Ye C, Xu Y, et al. 2010, Plasma Sci. Technol., 12: 566 29 Di Mundo R, De Benedictis V, Palumbo F, et al. 2009,Appl. Surf. Sci., 255: 5461 30 Chase J E, Boerio F J. 2003, J. Vac. Sci. Technol. A,21: 607 31 Kinmond E J, Coulson S R, Badyal J P S, et al. 2005,Polymer, 46: 6829 32 Coulson S R, Woodward I S, Badyal J P S, et al. 2000,Langmuir, 16: 6287 33 Feng J C, Huang W, Fu G D, et al. 2005, Plasma Process. Polym., 2: 127 34 Teare D O H, Spanos C G, Ridley P, et al. 2002, Chem.Mater., 14: 4566 35 Duque L, Menges B, Borros S, et al. 2010, Biomacromolecules, 11: 2818 36 Coulson S R, Woodward I S, Badyal J P S, et al. 2000,Chem. Mater., 12: 2031 37 Yim J H, Rodriguez-Santiago V, Williams A A, et al.2013, Surf. Coat. Technol., 234: 21 38 Fu G D, Kang E T, Neoh K G. 2003, J. Phys. Chem.B, 107: 13902 39 Zhang Y, Kang E T, Neoh K G, et al. 2002, Polymer,43: 7279 40 Hynes A, Badyal J P S. 1998, Chem. Mater., 10: 2177 41 Yang S H, Liu C H, Hsu W T, et al. 2009, Surf. Coat.Technol., 203: 1379 42 Carpentier J, Grundmeier G. 2005, Surf. Coat. Technol., 192: 189 43 Chu L Q, Knoll W, Forch R. 2006, Chem. Mater., 18:4840 44 Chu L Q, Knoll W, Forch R. 2006, Langmuir, 22: 5548 45 Forch R, Zhang Z H, Knoll W. 2005, Plasma Process.Polym., 2: 351 46 Knoll W. 1998, Annu. Rev. Phys. Chem., 49: 569 47 Butoi C I, Mackie N M, Gamble L J, et al. 2000, Chem.Mater., 12: 2014 48 Tong S W, Fung M K, Lee C S, et al. 2003, Appl. Surf.Sci., 220: 19 49 Liu D, Gu J, Feng Z, et al. 2010, Vacuum, 85: 253 50 Vandencasteele N, Reniers F. 2010, J. Electron. Spectrosc. Relat. Phenom., 178-179: 394
  • Related Articles

    [1]Yongpeng MO, Zongqian SHI, Shenli JIA. Study of post-arc residual plasma dissipation process of vacuum circuit breakers based on a 2D particle-in-cell model[J]. Plasma Science and Technology, 2022, 24(4): 045401. DOI: 10.1088/2058-6272/ac5235
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Dan ZHANG (张丹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Effect of lens focusing distance on laser-induced silicon plasmas at different sample temperatures[J]. Plasma Science and Technology, 2019, 21(3): 34009-034009. DOI: 10.1088/2058-6272/aaec9b
    [4]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [5]Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c
    [6]ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04
    [7]GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02
    [8]WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04
    [9]HU Zhidan(胡志丹), SHENG Zhengming (盛政明), Ding Wenjun (丁文君), WANG Weimin (王伟民), DONG Quanli (董全力), ZHANG Jie(张杰), et al. Electromagnetic Emission from Laser Wakefields in Magnetized Underdense Plasmas[J]. Plasma Science and Technology, 2012, 14(10): 874-879. DOI: 10.1088/1009-0630/14/10/04
    [10]JI Liangliang (吉亮亮), SHEN Baifei (沈百飞), ZHANG Xiaomei (张晓梅), WANG Wenpeng (王文鹏), YU Yahong (郁亚红), WANG Xiaofeng (王晓峰), YI Longqing (易龙卿), SHI Yin (时银), et al. Plasma Approach for Generating Ultra-Intense Single Attosecond Pulse[J]. Plasma Science and Technology, 2012, 14(10): 859-863. DOI: 10.1088/1009-0630/14/10/01

Catalog

    Article views (365) PDF downloads (1141) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return