Advanced Search+
MU Haibao (穆海宝), YU Lin (喻琳), LI Ping (李平), TANG Chenglong (汤成龙), WANG Jinhua (王金华), ZHANG Guanjun (张冠军). Study on the Enhancement Effect of Dielectric Barrier Discharge on the Premixed Methane/Oxygen/Helium Flame Velocity[J]. Plasma Science and Technology, 2015, 17(12): 1019-1026. DOI: 10.1088/1009-0630/17/12/07
Citation: MU Haibao (穆海宝), YU Lin (喻琳), LI Ping (李平), TANG Chenglong (汤成龙), WANG Jinhua (王金华), ZHANG Guanjun (张冠军). Study on the Enhancement Effect of Dielectric Barrier Discharge on the Premixed Methane/Oxygen/Helium Flame Velocity[J]. Plasma Science and Technology, 2015, 17(12): 1019-1026. DOI: 10.1088/1009-0630/17/12/07

Study on the Enhancement Effect of Dielectric Barrier Discharge on the Premixed Methane/Oxygen/Helium Flame Velocity

Funds: supported by the Fundamental Research Funds for the Central Universities of China (No. xjj2013086), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2014JQ7254) and National Natural Science Foundation of China (No. 51477135)
More Information
  • Received Date: February 02, 2015
  • Recently, plasma-assisted combustion has become a potentially applicable technology in many combustion scenarios. In this paper, a dielectric barrier discharge (DBD) plasma generator is designed to explore the effect of plasma on the CH4 oxidation process, and several properties of combustion are considered. First, in the presence or absence of plasma discharge, physical appearance of the flame is examined and analyzed. Second, the flame propagation velocity is calculated by the flame front extracted from the imaging data with the Bunsen burner method. Finally, the main molecular components and their intensity variation in the flame and the plasma zones are identified with an emission spectrograph to analyze the effect of active species on the combustion process. We also discuss the possible kinetic regime of plasma-assisted combustion. Experimental results imply that plasma discharge applied to the premixed CH4/O2/He mixture significantly raises the flame speed with equivalence ratios ranging from 0.85 to 1.10, with the flame speed improved by 17% to 35%. It can be seen that plasma can improve methane oxidation efficiency in the premixed fuel/oxidizer, especially at a low equivalence ratio.
  • 1 Starikovskiy A, Aleksandrov N. 2013, Progress in Energy and Combustion Science, 39: 61 2 Ganguly B N. 2007, Plasma Physics and Controlled Fusion, 49: B239 3 Cha M S, Lee S M, Kim K T, et al. 2005, Combustion and Flame, 141: 438 4 Shebeko Y N. 1982, Combustion, Explosion, and Shock Waves, 18: 427 5 Yu X, Peng J, Sun R, et al. 2011, Optics Letters, 36:1930 6 Hammack S, Rao X, Lee T H, et al. 2010, IEEE Transactions on Plasma Science, 39: 3300 7 Kim Y, Ferreri V W, Rosocha L A, et al. 2006, IEEE Transactions on Plasma Science, 34: 2532 8 Rosocha L A, Coates D M, Platts D, et al. 2004,Physics of Plasmas, 11: 2950 9 Zhukov V P, Starikovskii A Yu. 2006, Combustion,Explosion and Shock Waves, 42: 195 10 Aleksandrov N L, Kindysheva S V, Kukaev E N, et al.2009, Plasma Physics Reports, 35: 867 11 Ombrello T, Wona S H, Ju Y G, et al. 2010, Combustion and Flame, 157: 1906 12 Ombrello T, Wona S H, Ju Y G, et al. 2010, Combustion and Flame, 157: 1916 13 Vu T M, Won S H, Ombrello T, et al. 2013, Combustion and Flame, 161: 917 14 Zaima K and Sasaki K. 2013, Japanese Journal of Applied Physics, 53: 6 15 Duan Y, Huang C, Yu Q. 2005, IEEE Transactions on Plasma Science, 33: 328 16 Yu Q S, Huang C, Hsieh F H, et al. 2006, Applied Physics Letters, 88: 013903 17 Tang J, Duan Y, Zhao W. 2010, Applied Physics Letters, 96: 191503 18 Tang J, Zhao W, Duan Y. 2011, Plasma Sources Sci.Technol., 20: 045009 19 Mu H B, Yu L, Li P, et al. 2014, IEEE Transactions on Plasma Science, : 99 20 Kogelschatz U. 2003, Plasma Chemistry and Plasma Processing, 23: 1 21 Law C K, Sung C J. 2000, Progress in Energy and Combustion Science, 26: 459 22 Andrews G E, Bradley D. 1972, Combustion and Flame, 18: 133 23 Jidenko N, Petit M, Borra J P. 2006, Journal of Physics D: Applied Physics, 39: 281 24 Han K N. 1998, Metal and Materials, 4: 1097 25 Tang J, Zhao W, Duan Y X. 2010, IEEE Transactions on Plasma Science, 38: 3272 26 Starikovskaia S M, Kosarev I N, Krasnochub A V, et al. 2005, Control of combusion and ignition of hydrocarbon-containing mixtures by nanosecond pulsed discharges. 43rd AIAA aerospace sciences meeting and exhibit, Reno, Nevada, USA. AIAA Paper 2005-1195 27 Kong F A, Luo Q, Xu H L, et al. 2006, J. Chem. Phys.,125: 133320 28 Garscadden A, Kushner M J, Eden J G. 1991, IEEE Transactions on Plasma Science, 19: 1013 29 Robert C W. 1989, Handbook of Chemistry and Physics. CRC Press, Boca, USA 30 Xu X J, Zhu D C. 1996, Discharge Physics of Gas.Fudan University Press, Shanghai, China 31 Erwin D A, Kunc J A. 2008, Journal of Applied Physics, 103: 064906 32 Uddi M. 2008, Non-equilibrium kinetic studies of repetitively pulsed nanosecond discharge plasma assisted combustion [Ph.D]. The Ohio State University 33 Kosarev I N, Aleksandrov N L, Kindysheva S V, et al.2008, Combustion and Flame, 154: 569 34 Kim Y, Ferreri V W, Rosocha L A, et al. 2006, IEEE Transactions on Plasma Science, 34: 2532 35 Stafford D S, Kushner M J. 2004, Journal of Applied Physics, 96: 2451
  • Related Articles

    [1]Shoujie LI, Ronger ZHENG, Yoshihiro DEGUCHI, Wangquan YE, Ye TIAN, Jinjia GUO, Ying LI, Yuan LU. Spectra-assisted laser focusing in quantitative analysis of laser-induced breakdown spectroscopy for copper alloys[J]. Plasma Science and Technology, 2023, 25(4): 045510. DOI: 10.1088/2058-6272/aca5f4
    [2]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [3]Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1
    [4]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [5]Shuxia ZHAO (赵书霞), Lei ZHANG (张雷), Jiajia HOU (侯佳佳), Yang ZHAO (赵洋), Wangbao YIN (尹王保), Weiguang MA (马维光), Lei DONG (董磊), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity[J]. Plasma Science and Technology, 2018, 20(3): 35502-035502. DOI: 10.1088/2058-6272/aa97ce
    [6]Zhiyu YAN (严志宇), Xin WANG (王鑫), Bing SUN (孙冰), Mi WEN (文密), Yue HAN (韩月). Catalytic technology for water treatment by micro arc oxidation on Ti–Al alloy[J]. Plasma Science and Technology, 2017, 19(3): 35501-035501. DOI: 10.1088/2058-6272/19/3/035501
    [7]HE Yongyi (何泳仪), CHEN Li (陈砺), YAN Zongcheng (严京城), ZHANG Yalei (张亚磊). Effects of CH3OH Addition on Plasma Electrolytic Oxidation of AZ31 Magnesium Alloys[J]. Plasma Science and Technology, 2015, 17(9): 761-766. DOI: 10.1088/1009-0630/17/9/07
    [8]LIU Ping (刘平), HAI Ran (海然), WU Ding (吴鼎), XIAO Qingmei (肖青梅), SUN Liying (孙丽影), DING Hongbin (丁洪斌). The Enhanced Effect of Optical Emission from Laser Induced Breakdown Spectroscopy of an Al-Li Alloy in the Presence of Magnetic Field Confinement[J]. Plasma Science and Technology, 2015, 17(8): 687-692. DOI: 10.1088/1009-0630/17/8/13
    [9]QI Lifeng (齐立峰), SUN Lanxiang (孙兰香), XIN Yong (辛勇), CONG Zhibo (丛智博), LI Yang (李洋), YU Haibin (于海斌). Application of Stand-off Double-Pulse Laser-Induced Breakdown Spectroscopy in Elemental Analysis of Magnesium Alloy[J]. Plasma Science and Technology, 2015, 17(8): 676-681. DOI: 10.1088/1009-0630/17/8/11
    [10]JIN Shuoxue (靳硕学), GUO Liping (郭立平), YANG Zheng (杨铮), ZHOU Zhongpo (周忠坡), FU Dejun (付德君), LIU Chuansheng (刘传胜), TANG Rui (唐睿), LIU Feihua (刘飞华), QIAO Yanxin (乔岩欣), et, al. Structural Characterization of Nickel-Base Alloy C-276 Irradiated with Ar Ions[J]. Plasma Science and Technology, 2012, 14(6): 548-552. DOI: 10.1088/1009-0630/14/6/26

Catalog

    Article views (370) PDF downloads (912) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return