Advanced Search+
XIE Zhuoming (谢卓明), LIU Rui (刘瑞), FANG Qianfeng (方前锋), ZHANG Tao (张涛), JIANG Yan (蒋燕), WANG Xianping (王先平), LIU Changsong (刘长松). Microstructure and Mechanical Properties of Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys Fabricated by Spark Plasma Sintering Method[J]. Plasma Science and Technology, 2015, 17(12): 1066-1071. DOI: 10.1088/1009-0630/17/12/15
Citation: XIE Zhuoming (谢卓明), LIU Rui (刘瑞), FANG Qianfeng (方前锋), ZHANG Tao (张涛), JIANG Yan (蒋燕), WANG Xianping (王先平), LIU Changsong (刘长松). Microstructure and Mechanical Properties of Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys Fabricated by Spark Plasma Sintering Method[J]. Plasma Science and Technology, 2015, 17(12): 1066-1071. DOI: 10.1088/1009-0630/17/12/15

Microstructure and Mechanical Properties of Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys Fabricated by Spark Plasma Sintering Method

Funds: supported by the Innovation Program of Chinese Academy of Sciences (No. KJCX2-YW-N35), the National Magnetic Confinement Fusion Science Program of China (No. 2011GB108004), National Natural Science Foundation of China (Nos. 51301164, 11075177,11274305), and Anhui Provincial Natural Science Foundation of China (No. 1408085QE77)
More Information
  • Received Date: November 24, 2014
  • W-(0.2, 0.5, 1.0)wt% ZrC alloys with a relative density above 97.5% were fabricated through the spark plasma sintering (SPS) method. The grain size of W-1.0wt% ZrC is about 2.7 μm, smaller than that of pure W and W-(0.2, 0.5)wt% ZrC. The results indicated that the W-ZrC alloys exhibit higher hardness at room temperature, higher tensile strength at high tem?perature, and a lower ductile to brittle transition temperature (DBTT) than pure W. The tensile strength and total elongation of W-0.5wt% ZrC alloy at 700oC is 535 MPa and 24.8%, which are respectively 59% and 114% higher than those of pure W (337 MPa, 11.6%). The DBTT of W-(0.2, 0.5, 1.0)wt% ZrC materials is in the range of 500 oC-600oC, which is about 100oC lower than that of pure W. Based on microstructure analysis, the improved mechanical properties of the W-ZrC alloys were suggested to originate from the enhanced grain boundary cohesion by ZrC capturing the impurity oxygen in tungsten and nano-size ZrC dispersion strengthening.
  • 1 Norajitra P, Boccaccini L V, Diegele E, et al. 2004, J.Nucl. Mater., 329-333: 1594 2 Smid I, Pacher H D, Vieider G, et al. 1996, J. Nucl.Mater., 233-237: 701 3 Norajitra P, Boccaccini L V, Gervash A, et al. 2007,J. Nucl. Mater., 367-370: 1416 4 Kurishita H, Kobayashi S, Nakai K, et al. 2008, J.Nucl. Mater., 377: 34 5 Kurishita H, Amano K, Kobayashi S, et al. 2007, J.Nucl. Mater., 367-370: 1453 6 Funkenbusch A W, Bacon F and Lee D. 1979, Met.Trans. A., 10A: 1085 7 Joshi A and Stein D F. 1970, Met. Trans., 1: 2543 8 Liu J M and Shen B W. 1982, Acta Met., 30: 1197 9 Greger M, Cizek L and Widomska M. 2004, J. Mater. Process. Tech., 157: 683 10 Setyawan W and Kurtz R J. 2012, Scripta Mater., 66:558 11 Kecskes L J, Cho K C, Dowding R J, et al. 2007,Mater. Sci. Eng. A: Struct., 467: 33 12 Liu R, Zhou Y, Hao T, et al. 2012, J. Nucl. Mater., 424: 171 13 Zhang T Q, Wang Y J, Zhou Y, et al. 2010, Mater.Sci. Eng. A, 527: 4021 14 Wesemann I, Spielmann W, Heel P, et al. 2010, Int. J.Refract. Met. Hard Mater., 28: 687 15 Kim Y, Hong M H, Lee S H, et al. 2006, Met. Mater.Int., 12: 245 16 Kurishita H, Kuwabara T, Hasegawa M, et al. 2005,J. Nucl. Mater., 343: 318 17 Samaras M, Derlet P M, Swygenhoven H V, et al. 2002,Phys. Rev. Lett., 88: 12 18 Shimada S. 1997, Solid State Ionics, 101-103: 749 19 Xie Z M, Liu R, Fang Q F, et al. 2014, J. Nucl. Mater., 444: 175 20 Liu R, Xie Z M, Hao T, et al. 2014, J. Nucl. Mater., 451: 35 21 Podyachev V N and Gavrilyuk M I. 1975, Metalloved.Term. Obrab. Met., 24-28 22 Preiss H, Berger L-M and Szulzewsky K. 1996, Carbon, 34: 109 23 Liu G, Zhang G J, Jiang F, et al. 2013, Nature Materials, 12: 344
  • Related Articles

    [1]Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6
    [2]Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19
    [3]Bin HAN (韩滨), D NEENA, Zesong WANG (王泽松), K K KONDAMAREDDY, Na LI (李娜), Wenbin ZUO (左文彬), Shaojian YAN (闫少健), Chuansheng LIU (刘传胜), Dejun FU (付德君). Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films[J]. Plasma Science and Technology, 2017, 19(4): 45503-045503. DOI: 10.1088/2058-6272/aa57eb
    [4]Jixiong XIAO (肖集雄), Zhong ZENG (曾中), Zhijiang WANG (王之江), Donghui XIA (夏冬辉), Changhai LIU (刘昌海). Electromagnetic dispersion characteristics of a high energy electron beam guided with an ion channel[J]. Plasma Science and Technology, 2017, 19(2): 24004-024004. DOI: 10.1088/2058-6272/19/2/024004
    [5]ZHU Jun (祝俊). Dispersion Relation of Linear Waves in Quantum Magnetoplasmas[J]. Plasma Science and Technology, 2016, 18(7): 703-707. DOI: 10.1088/1009-0630/18/7/01
    [6]XIE Huasheng (谢华生), XIAO Yong (肖湧). PDRK: A General Kinetic Dispersion Relation Solver for Magnetized Plasma[J]. Plasma Science and Technology, 2016, 18(2): 97-107. DOI: 10.1088/1009-0630/18/2/01
    [7]XIAO Jixiong (肖集雄), ZENG Zhong (曾中), XIA Donghui (夏冬辉), WANG Zhijiang (王之江), LIU Changhai (刘昌海). Effects of Boundary Current on Electromagnetic Dispersion Characteristics for a Relativistic Electron Beam[J]. Plasma Science and Technology, 2016, 18(1): 51-57. DOI: 10.1088/1009-0630/18/1/09
    [8]YU Xingang (余新刚), GOU Fujun (苟富均). Molecular Dynamics Study on the Diffusion Properties of Hydrogen Atoms in Bulk Tungsten[J]. Plasma Science and Technology, 2013, 15(7): 710-715. DOI: 10.1088/1009-0630/15/7/19
    [9]CHEN Ling (陈玲), WU Dejin (吴德金). Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy[J]. Plasma Science and Technology, 2012, 14(10): 880-885. DOI: 10.1088/1009-0630/14/10/05
    [10]SUN Qinxing(孙钦星), ZHANG Tao(张涛), WANG Xianping(王先平), FANG Qianfeng(方前锋), Hu Jing(胡菁), LIU Changsong(刘长松). Synthesis and Characterization of Oxide Dispersion Strengthened Ferritic Steel via a Sol-gel Route[J]. Plasma Science and Technology, 2012, 14(7): 661-664. DOI: 10.1088/1009-0630/14/7/21

Catalog

    Article views (317) PDF downloads (1087) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return