Advanced Search+
M. T. RAHMAN, M. N. A. DEWAN. Analytical Determination of Collisionless Sheath Properties for Triple Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2015, 17(2): 141-146. DOI: 10.1088/1009-0630/17/2/08
Citation: M. T. RAHMAN, M. N. A. DEWAN. Analytical Determination of Collisionless Sheath Properties for Triple Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2015, 17(2): 141-146. DOI: 10.1088/1009-0630/17/2/08

Analytical Determination of Collisionless Sheath Properties for Triple Frequency Capacitively Coupled Plasma

More Information
  • Received Date: February 22, 2014
  • A triple frequency capacitively coupled plasma (TF-CCP) has been considered to investigate the behavior of the sheath parameters. A self-consistent time-independent collisionless model has been developed. The sheath width and potential are calculated using the present model and compared with those calculated using a single-frequency (SF), a dual-frequency (DF) and a triple-frequency (TF) model for time independent collisionless cases. The sheath motion and sheath potential are found to be larger compared with those of SF and DF CCPs for an inhomogeneous sheath, and that of TF CCP for a homogeneous sheath. The effects of the source parameters, i.e., current magnitudes, frequencies and phase difference, on the sheath parameters are investigated. The sheath parameters show higher values at higher source currents whereas they decrease with the increase of excitation frequencies. It has also been found that, by the proper choice of source frequencies and phase differences, it is possible to adjust the energy of ions when they hit the electrode.
  • Related Articles

    [1]Ernest GNAPOWSKI, Sebastian GNAPOWSKI, Jaros|aw PYTKA. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes[J]. Plasma Science and Technology, 2018, 20(8): 85505-085505. DOI: 10.1088/2058-6272/aac1b6
    [2]Jia TIAN (田甲), Wenzheng LIU (刘文正), Weisheng CUI (崔伟胜), Yongjie GAO (高永杰). Generation characteristics of a metal ion plasma jet in vacuum discharge[J]. Plasma Science and Technology, 2018, 20(8): 85403-085403. DOI: 10.1088/2058-6272/aabedf
    [3]Junying WU (伍俊英), Long WANG (汪龙), Yase LI (李雅瑟), Lijun YANG (杨利军), Manzoor SULTAN, Lang CHEN (陈朗). Characteristics of a plasma flow field produced by a metal array bridge foil explosion[J]. Plasma Science and Technology, 2018, 20(7): 75501-075501. DOI: 10.1088/2058-6272/aab783
    [4]Carlo POGGI, Théo GUILLAUME, Fabrice DOVEIL, Laurence CHÉRIGIER-KOVACIC. Estimation of the Lyman-α signal of the EFILE diagnostic under static or radiofrequency electric field in vacuum[J]. Plasma Science and Technology, 2018, 20(7): 74001-074001. DOI: 10.1088/2058-6272/aabde3
    [5]Weisheng CUI (崔伟胜), Wenzheng LIU (刘文正), Jia TIAN (田甲), Xiuyang CHEN (陈修阳). Study on the plasma generation characteristics of an induction-triggered coaxial pulsed plasma thruster[J]. Plasma Science and Technology, 2018, 20(2): 24003-024003. DOI: 10.1088/2058-6272/aa8a5e
    [6]Li ZHANG (张丽), Dezheng YANG (杨德正), Sen WANG (王森), Wenchun WANG (王文春). Spatiotemporal characteristics of nanosecond pulsed discharge in an extremely asymmetric electric field at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64006-064006. DOI: 10.1088/2058-6272/aa632d
    [7]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [8]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [9]WANG Lijun (王立军), YANG Dingge (杨鼎革), JIA Shenli (贾申利), WANG Liuhuo (王流火), SHI Zongqian (史宗谦). Vacuum Arc Characteristics Simulation at Different Moments Under Power-Frequency Current[J]. Plasma Science and Technology, 2012, 14(3): 227-234. DOI: 10.1088/1009-0630/14/3/08
    [10]LIU Wenzheng (刘文正), ZHANG Dejin (张德金), KONG Fei (孔飞). The Impact of Electrode Configuration on Characteristics of Vacuum Discharge Plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. DOI: 10.1088/1009-0630/14/2/08

Catalog

    Article views (345) PDF downloads (1233) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return