Advanced Search+
LV Lin (吕琳), WANG Jianhua (汪建华), WENG Jun (翁俊), CUI Xiaohui (崔晓慧), ZHANG Ying (张莹). Effect of Argon Addition on Morphology and Structure of Diamond Films (from Microcrystalline to Nanocrystalline)[J]. Plasma Science and Technology, 2015, 17(3): 216-220. DOI: 10.1088/1009-0630/17/3/08
Citation: LV Lin (吕琳), WANG Jianhua (汪建华), WENG Jun (翁俊), CUI Xiaohui (崔晓慧), ZHANG Ying (张莹). Effect of Argon Addition on Morphology and Structure of Diamond Films (from Microcrystalline to Nanocrystalline)[J]. Plasma Science and Technology, 2015, 17(3): 216-220. DOI: 10.1088/1009-0630/17/3/08

Effect of Argon Addition on Morphology and Structure of Diamond Films (from Microcrystalline to Nanocrystalline)

Funds: supported by National Natural Science Foundation of China (No. 11175137)
More Information
  • Received Date: July 08, 2014
  • Micro-/nanocrystalline diamond films deposited in Ar/H 2 /CH 4 microwave plasmas have been studied, with argon flow rates in the range of 70-100 sccm. The effects of argon addition on morphology, surface roughness, quality and structure were investigated by scanning electron microscopy, surface profiler, Raman spectrometer and X-ray diffraction (XRD). It is demonstrated that when the argon flow rate is 70 sccm or 75 sccm, well-faceted polycrystalline diamond films can be grown at a low substrate temperature less than 610 o C. With the increase in the argon flow rate, the smooth crystallographic planes disappear gradually. Instead, rough crystallographic planes made up of small aggregates begin to take shape, resulting from the increase in the secondary nucleation rate. Nanocrystalline diamond films were obtained at a flow rate of 100 sccm, and all of the prepared diamond films were smooth, with a surface roughness (Ra) less than 20 nm. Raman analyses reveal that the amount of amorphous carbon increases significantly with the increase in argon flow. The results of XRD show that crystalline size and preferential orientation of diamond films depend on the argon content in the plasmas.
  • Related Articles

    [1]Bin TIAN, Mario MERINO, Jie WAN, Yuan HU, Yong CAO. Investigation of radial heat conduction with 1D self-consistent model in helicon plasmas[J]. Plasma Science and Technology, 2023, 25(1): 015401. DOI: 10.1088/2058-6272/ac8399
    [2]Andrey SHASHKOV, Mikhail TYUSHEV, Alexander LOVTSOV, Dmitry TOMILIN, Dmitrii KRAVCHENKO. Machine learning-based method to adjust electron anomalous conductivity profile to experimentally measured operating parameters of Hall thruster[J]. Plasma Science and Technology, 2022, 24(6): 065502. DOI: 10.1088/2058-6272/ac59e1
    [3]Wei YANG, Fei GAO, Younian WANG. Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas[J]. Plasma Science and Technology, 2022, 24(5): 055401. DOI: 10.1088/2058-6272/ac56ce
    [4]Jin LIU, Xinbo ZHU, Xueli HU, Xin TU. Plasma-assisted ammonia synthesis in a packed-bed dielectric barrier discharge reactor: roles of dielectric constant and thermal conductivity of packing materials[J]. Plasma Science and Technology, 2022, 24(2): 025503. DOI: 10.1088/2058-6272/ac39fb
    [5]Sh RAHMATALLAHPUR, A ROSTAMI, S KHORRAM. Two-dimensional analysis of a negative differential conductance gate transistor as a THz emitter[J]. Plasma Science and Technology, 2017, 19(4): 45001-045001. DOI: 10.1088/2058-6272/aa4ee2
    [6]A F POPOVICH, V G RALCHENKO, V K BALLA, A K MALLIK, A A KHOMICH, A P BOLSHAKOV, D N SOVYK, E E ASHKINAZI, V Yu YUROV. Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2017, 19(3): 35503-035503. DOI: 10.1088/2058-6272/19/3/035503
    [7]Pascal ANDRE, William BUSSIERE, Alain COULBOIS, Jean-Louis GELET, David ROCHETTE. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature[J]. Plasma Science and Technology, 2016, 18(8): 812-820. DOI: 10.1088/1009-0630/18/8/04
    [8]WANG Zhaojun(王兆均), JIANG Song(姜松), LIU Kefu(刘克富). Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma[J]. Plasma Science and Technology, 2014, 16(7): 688-694. DOI: 10.1088/1009-0630/16/7/10
    [9]Zakir HUSSAIN, LIU Chan (刘婵), ZHANG Nianmei (张年梅), NI Mingjiu (倪明玖). Instability in Three-Dimensional Magnetohydrodynamic Flows of an Electrically Conducting Fluid[J]. Plasma Science and Technology, 2013, 15(12): 1263-1270. DOI: 10.1088/1009-0630/15/12/19
    [10]WANG Xiaoping (王小平), ZHANG Xingwang (张兴旺), LEI Lecheng (雷乐成). High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes[J]. Plasma Science and Technology, 2013, 15(6): 528-534. DOI: 10.1088/1009-0630/15/6/08

Catalog

    Article views (283) PDF downloads (1235) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return