Advanced Search+
LIU Cong (刘聪), WANG Jianhua (汪建华), LIU Sijia(刘斯佳), et al.. Effects of Surface Pretreatment on Nucleation and Growth of Ultra-Nanocrystalline Diamond Films[J]. Plasma Science and Technology, 2015, 17(6): 496-501. DOI: 10.1088/1009-0630/17/6/10
Citation: LIU Cong (刘聪), WANG Jianhua (汪建华), LIU Sijia(刘斯佳), et al.. Effects of Surface Pretreatment on Nucleation and Growth of Ultra-Nanocrystalline Diamond Films[J]. Plasma Science and Technology, 2015, 17(6): 496-501. DOI: 10.1088/1009-0630/17/6/10

Effects of Surface Pretreatment on Nucleation and Growth of Ultra-Nanocrystalline Diamond Films

Funds: supported by the Natural Science Foundation of China (No. 11175137) and the Research Fund of Wuhan Institute of Technology (No. 11111051)
More Information
  • The effects of different surface pretreatment methods on the nucleation and growth of ultra-nanocrystalline diamond (UNCD) films grown from focused microwave Ar/CH4/H2 (argon-rich) plasma were systematically studied. The surface roughness, nucleation density, microstructure, and crystallinity of the obtained UNCD films were characterized by atomic force microscope (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. The results indicate that the nucleation enhancement was found to be sensitive to the different surface pretreatment methods, and a higher initial nucleation density leads to highly smooth UNCD films. When the silicon substrate was pretreated by a two-step method, i.e., plasma treatment followed by ultrasonic vibration with diamond nanopowder, the grain size of the UNCD films was greatly decreased: about 7.5 nm can be achieved. In addition, the grain size of UNCD films depends on the substrate pretreatment methods and roughness, which indicates that the surface of substrate profile has a "genetic characteristic".
  • Related Articles

    [1]Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369
    [2]Ahmed Rida GALALY, Guido VAN OOST. Fast inactivation of microbes and degradation of organic compounds dissolved in water by thermal plasma[J]. Plasma Science and Technology, 2018, 20(8): 85504-085504. DOI: 10.1088/2058-6272/aac1b7
    [3]Teng FEI (费腾), Congyuan PAN (潘从元), Qiang ZENG (曾强), Qiuping WANG (王秋平), Xuewei DU (杜学维). Relative spectral response calibration using Ti plasma lines[J]. Plasma Science and Technology, 2018, 20(4): 45503-045503. DOI: 10.1088/2058-6272/aaaada
    [4]Xiangyang LIU (刘向阳), Siyu WANG (王司宇), Yang ZHOU (周阳), Zhiwen WU (武志文), Kan XIE (谢侃), Ningfei WANG (王宁飞). Thermal radiation properties of PTFE plasma[J]. Plasma Science and Technology, 2017, 19(6): 64012-064012. DOI: 10.1088/2058-6272/aa65e8
    [5]PAN Jie (潘杰), LI Li (李莉), WANG Yunuan (王玉暖), XIU Xianwu (修显武), WANG Chao (王超), SONG Yuzhi (宋玉志). Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges[J]. Plasma Science and Technology, 2016, 18(11): 1081-1088. DOI: 10.1088/1009-0630/18/11/05
    [6]LI Mingshu (李铭书), LI Shengli (李胜利), SUN Demao (孙德茂), LIU Xin (刘欣), FENG Qiubao (冯求宝). Preliminary Study of Thermal Treatment of Coke Wastewater Sludge Using Plasma Torch[J]. Plasma Science and Technology, 2016, 18(10): 1020-1026. DOI: 10.1088/1009-0630/18/10/09
    [7]WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06
    [8]ZHOU Xue (周学), CUI Xinglei (崔行磊), CHEN Mo (陈默), ZHAI Guofu (翟国富). Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor[J]. Plasma Science and Technology, 2016, 18(5): 560-568. DOI: 10.1088/1009-0630/18/5/20
    [9]Aamir Shahzad, HE Maogang. Thermodynamic Characteristics of Dusty Plasma studied by using Molecular Dynamics Simulation[J]. Plasma Science and Technology, 2012, 14(9): 771-777. DOI: 10.1088/1009-0630/14/9/01
    [10]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12

Catalog

    Article views (284) PDF downloads (723) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return