Advanced Search+
ZHU Xiang (朱翔), ZENG Long (曾龙), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZHANG Shoubiao (张寿彪), HU Jiansheng (胡建生), GAO Xiang (高翔). Reconstruction of the Density Profile for the EAST Tokamak Based on Polarimeter/Interferometer and Microwave Reflectometer Systems[J]. Plasma Science and Technology, 2015, 17(9): 733-737. DOI: 10.1088/1009-0630/17/9/03
Citation: ZHU Xiang (朱翔), ZENG Long (曾龙), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZHANG Shoubiao (张寿彪), HU Jiansheng (胡建生), GAO Xiang (高翔). Reconstruction of the Density Profile for the EAST Tokamak Based on Polarimeter/Interferometer and Microwave Reflectometer Systems[J]. Plasma Science and Technology, 2015, 17(9): 733-737. DOI: 10.1088/1009-0630/17/9/03

Reconstruction of the Density Profile for the EAST Tokamak Based on Polarimeter/Interferometer and Microwave Reflectometer Systems

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106003, 2014GB106004 and 2014GB106002) and National Natural Science Foundation of China (Nos. 11475221 and 11105184)
More Information
  • Received Date: December 30, 2014
  • A plasma density profile reconstruction procedure based on the Park matrix method has been developed for both circular and elongated plasma configuration on the Experimental Ad?vanced Superconducting Tokamak (EAST). This method incorporates the line integrated electron density measured by the HCN interferometer and polarimeter/interferometer (POINT) system, the equilibrium fit (EFIT) based on magnetic measurements and the edge electron density profile provided by the microwave reflectometer. It is shown that when the magnetic flux surfaces are slightly corrected, the fitting error is less than 5% in comparison with the measurement data.
  • 1 Wan Yuanxi, Li Jiangang, Weng Peide, et al. 2006,Plasma Science and Technology, 8: 253 2 Tomassini P, Giulietti A. 2001, Optics Communications, 15: 143 3 Yasutomo Y, Miyata K, Himeno S I, et al. 1981, IEEE Transactions on Plasma Science, 9: 18 4 Gottardi N. 1979, Journal of Applied Physics, 50: 2647 5 Hyeon K P. 1989, Plasma Physics and Controlled Fusion, 31: 2035 6 Strachan J D, Adler H, Ailing P, et al. 1994, Physical Review Letters, 72: 3526 7 Liu Haiqing, Jie Yinxian, Ding Weixing, et al. 2013,Journal of Instrumentation, 8: 22 8 Liu Haiqing, Jie Yinxian, Ding Weixing, et al. 2014,Review of Scientific Instruments, 85: 11D405 9 Zou Zhiyong, Liu Haiqing, Jie Yinxian, et al. 2014,Review of Scientific Instruments, 85: 11D409 10 Shen Jie, Jie Yinxian, Liu Haiqing, et al. 2013, Fusion Engineering and Design, 88: 2830 11 Zhang Shoubiao, Gao Xiang, Ling Bili, et al. 2014,Plasma Science and Technology, 16: 311 12 Qian Jinping, Wan Baonian, Lao L L, et al. 2009,Plasma Science and Technology, 11: 142
  • Cited by

    Periodical cited type(10)

    1. Tao, J., Li, C., Cao, X. et al. Modeling of the Arc Characteristics inside a Thermal Laminar Plasma Torch with Different Gas Components. Processes, 2024, 12(6): 1207. DOI:10.3390/pr12061207
    2. Hu, Y.-H., Sun, S.-R., Meng, X. et al. Experimental study on the life and performance of an improved DC arc plasma torch. Journal of Physics D: Applied Physics, 2024, 57(20): 205206. DOI:10.1088/1361-6463/ad256b
    3. Cao, X., He, Y., Tao, J. et al. Influence of Novel Anode Structure on the Heat Flow Characteristics and Jet Stability of Pure Nitrogen Laminar Torch. Plasma Chemistry and Plasma Processing, 2024. DOI:10.1007/s11090-024-10526-z
    4. Cao, X., Zhang, J., Guo, W. et al. Effects of Gas Components on the Jet Characteristics of a DC Plasma Torch by Using Orthogonal Test Method. IEEE Transactions on Plasma Science, 2024, 52(5): 1685-1698. DOI:10.1109/TPS.2024.3393414
    5. Cao, X., Wang, L., He, R. et al. Characterization of Fe-Based Layers Deposited by Laminar Plasma Cladding on Low-Carbon Steel. Journal of Thermal Spray Technology, 2023, 32(7): 2104-2111. DOI:10.1007/s11666-023-01634-x
    6. Zhang, H.-Y., Deng, S.-J., Liu, S.-H. et al. Study of annular coaxial powder feeding effect on the characteristics of laminar plasma jet and atmospheric cluster deposition. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129604
    7. Cao, X., Guo, W., Hu, G. et al. Design and Experimental Jet Characteristics of an Optimized DC Plasma Torch. IEEE Transactions on Plasma Science, 2022, 50(12): 4873-4881. DOI:10.1109/TPS.2022.3222690
    8. Zhang, H., Mauer, G., Liu, S. et al. Modeling of the Effect of Carrier Gas Injection on the Laminarity of the Plasma Jet Generated by a Cascaded Spray Gun. Coatings, 2022, 12(10): 1416. DOI:10.3390/coatings12101416
    9. Cao, X., He, R., Xu, H. et al. Experimental Study on the Design and Characteristics of an Optimized Thermal Plasma Torch with Two Gas Injections. Plasma Chemistry and Plasma Processing, 2021, 41(4): 1169-1181. DOI:10.1007/s11090-021-10178-3
    10. Cao, X., Li, C., He, R. et al. Study on the influences of the anode structures on the jet characteristics of a laminar plasma torch. Plasma Research Express, 2020, 2(1): 018001. DOI:10.1088/2516-1067/ab6c85

    Other cited types(0)

Catalog

    Article views (277) PDF downloads (1166) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return