Advanced Search+
CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), JIANG Yongfeng (蒋永锋), CHEN Longwei (陈龙威), GAO Yuan (高远), HAN Qingbang (韩庆邦). Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray[J]. Plasma Science and Technology, 2016, 18(1): 41-50. DOI: 10.1088/1009-0630/18/1/08
Citation: CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), JIANG Yongfeng (蒋永锋), CHEN Longwei (陈龙威), GAO Yuan (高远), HAN Qingbang (韩庆邦). Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray[J]. Plasma Science and Technology, 2016, 18(1): 41-50. DOI: 10.1088/1009-0630/18/1/08

Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray

Funds: supported by National Natural Science Foundation of China (Nos. 11274092, 51107033, 11404092, 11274091), the Nantong Science and Technology Project, China (No. BK2014024), the Open Project of Jiangsu Province Key Laboratory of Environmental Engineering, China (No. KF2014001), and the Fundamental Research Funds for the Central Universities, China (No. 2014B11414)
More Information
  • Received Date: August 23, 2015
  • Electric discharge in and in contact with water can accompany ultraviolet (UV) radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals (OH), oxygen radical (O), ozone (O3) and hydrogen peroxide (H2O2). In this paper, a non-thermal plasma processing system was established by means of dielectric barrier discharge (DBD) arrays in water mist spray. The relationship between droplet size and water content was examined, and the effects of the concentrations of oxides in both treated water and gas were investigated under different water content and discharge time. The relative intensity of UV spectra from DBD in water mist was a function of water content. The concentrations of both O3 and nitrogen dioxide (NO2) in DBD room decreased with increasing water content. Moreover, the concentrations of H2O2,O3 and nitrogen oxides (NOx) in treated water decreased with increasing water content, and all the ones enhanced after discharge. The experimental results were further analyzed by chemical reaction equations and commented by physical principles as much as possible. At last, the water containing phenol was tested in this system for the concentration from 100 mg/L to 9.8 mg/L in a period of 35 min.
  • 1 Chen Qiang, Li Junshuai and Li Yongfeng. 2015, J.Phys. D: Appl. Phys., 48: 424005 2 Kong M G, Liu D. 2014, High Voltage Engineering,40: 2956 (in Chinese) 3 Samukawa S, Hori M, Rauf S, et al. 2014, J. Phys. D:Appl. Phys., 45: 253001 4 Bruggeman Peter, Leys Christophe. 2009, J. Phys. D:Appl. Phys., 42: 053001 5 Lu XinPei, Yan Ping, Ren Chunsheng, et al. 2011, Sci.Sin.: Phys. Mech. Astron., 41: 801 (in Chinese) 6 Jimoh O. Tijani, Ojo O. Fatoba, et al. 2014, Water Air Soil Pollut., 225: 2102 7 Mart′ ?nková L, Uhn′ aková B, P′ atek M, et al. 2009, Environ. Int., 35: 162 8 Pˇ acurariua C, Mihoc G, Popa A, et al. 2013, Chem.Eng. J., 222: 218 9 Han Y X, Boateng A A, Qi P X, et al. 2013, J. Environ.Manage., 118: 196 10 Jiang N, Lu N, Shang K F, et al. 2013, J. Hazard.Mater., 262: 387 11 Chen B Y, Zhu C P, Chen L W, et al. 2014, Plasma Sci. Technol., 16: 1126 12 Wang X X. 2009, High Voltage Engineering, 35: 1 (in Chinese) 13 Shao T, Zhang C, Yu Y, et al. 2012, Vacuum, 86: 876 14 Park C W, Byeon J H, Yoon K Y, et al. 2011, Sep. Purif. Technol., 77: 87 15 Yang Xianli, Bai Mindong, Han Fen, et al. 2009, Water Environ. Res., 81: 450 16 Lin Qifu, Ni Guohua, Jiang Yiman, et al. 2014, Plasma Sci. Technol., 16: 1036 17 Wang Xiaoping, Li Zhongjian, Zhang Xingwang, et al. 2014, Plasma Sci. Technol., 16: 479 18 Azooz A A and Waysi S I. 2014, Plasma Sci. Technol.,16: 211 19 Yu Jianyang, Liu Huaping, Xu Dimeng, et al. 2014,Plasma Sci. Technol., 16: 197 20 Lu Na, Feng Yingchun, Li Jie, et al. 2015, IEEE Trans. Plasma Sci., 43: 580 21 Wandell R J, Locke B R. 2014, IEEE Trans. Plasma Sci., 42: 2634 22 Kim K S, Gam S G, Mok Y S. 2015, Chem. Eng. J.,271: 31 23 Jiang Song, Wen Yiyong, Liu Kefu. 2014, Plasma Sci. Technol., 16: 59 24 Bourdelle Franck, Truche Laurent, Pignatelli Isabella, et al. 2014, Chem. Geol., 381: 194 25 Ma Yajuan, Liu Bing, Zhang Yuhua, et al. 2015, Int. J. Hydrogen Energ., 40: 9147 26 Zhao Zhengfeng, Wang Yingzi, Xu Jing, et al. 2015,Appl. Surf. Sci., 351: 416 27 Santangelo P E. 2010, Exp. Therm. Fluid Sci., 34:1353 28 Wiksten R, Assad M E H. 2007, Int. J. Refrig., 30:1207 29 Zhou C H, Cheng S B, Sun J L, et al. 2009, J. Phys.Chem. A, 113: 4923 30 Charles de Izarra. 2000, J. Phys. D: Appl. Phys., 33:1697 31 Yang Q S, Jiang Z L, Peng Z M, et al. 2011, Acta Phys. Sin., 60: 053302 (in Chinese) 32 Dong Lifang, Zhao Longhu, Wang Yongjie, et al. 2014, Specrtosc. Spect. Anal., 34: 308 33 Cybulski H, Bielski A, Ciury? lo R, et al. 2013, J. Quant. Spectrosc. Ra., 120: 90 34 Vyrodov A O, Heinze J, and Meier U E. 1995, J. Quant. Spectrosc. Ra., 53: 227 35 Knutsen K, Dyer M J, and Richard A. 1996, J. Chem. Phys., 104: 5798 36 Li X Y, Lin Z X, Liu Y Y, et al. 2004, Acta Optical Sin., 24: 1051 37 Chen L W, Yu W, Xiao Z, et al. 2012, Thin Solid Films, 521: 226 38 Wang Ruixue, Zhang Cheng, Shen Yuan, et al. 2015,J. Appl. Phys., 118: 123303 39 Kogelschatz U. 2003, Plasma Chem. Plasma Process.,23: 1 40 Abdelaziz A A, Seto T, Abdel S M, et al. 2015, J.Phys. D: Appl. Phys., 48: 195201 41 Abdelaziz A A, Seto T, Abdel S M, et al. 2013, J.Hazard. Mater., 246-247: 26 42 Andreas S, James Y J, Steven E B, et al, 1998, IEEE Trans. Plasma Sci., 26: 1685 43 Yoon J S, Song M Y, Kwon D C, et al. 2014, Physics Reports, 543: 199 44 Liu K F, Zhao H Y, Qiu J. 2009, High Voltage Engineering, 35: 12 (in Chinese) 45 Penetrante B M, Hsiao M C, Bardsley J N, et al. 1997,Plasma Sources Sci. Technol., 6: 251 46 Shih K Y, Bruce R. 2011, IEEE Trans. Plasma Sci.,39: 883 47 Oba Y, Watanabe N, Kouchi A, et al. 2011, Phys.Chem. Chem. Phys., 13: 15792 48 Leong C H, Ponnivalavan B, Rajnish K, et al. 2013,Energy, 63: 252 49 Tas M A, Hardeveld R, Veldhuizen E M. 1997, Plasma Chem. Plasma Process., 17: 371 50 Bagheri M, Mohseni M. 2014, Chem. Eng. J., 256: 51 51 Casasanta G, Sarra A, Meloni D, et al. 2011, Atmos.Environ., 45: 3937 52 Pfister G, Baumgartner D, Maderbacher R, et al. 2000, Atmos. Environ., 34: 4019
  • Related Articles

    [1]Weiwei XU (徐卫卫), Xiuling ZHANG (张秀玲), Mengyue DONG (董梦悦), Jing ZHAO (赵静), Lanbo DI (底兰波). Plasma-assisted Ru/Zr-MOF catalyst for hydrogenation of CO2 to methane[J]. Plasma Science and Technology, 2019, 21(4): 44004-044004. DOI: 10.1088/2058-6272/aaf9d2
    [2]Haiying WEI (魏海英), Hongge GUO (郭红革), Lijun SANG (桑利军), Xingcun LI (李兴存), Qiang CHEN (陈强). Study on deposition of Al2O3 films by plasma-assisted atomic layer with different plasma sources[J]. Plasma Science and Technology, 2018, 20(6): 65508-065508. DOI: 10.1088/2058-6272/aaacc7
    [3]Vukoman JOKANOVIC, Bozana COLOVIC, Anka TRAJKOVSKA PETKOSKA, Ana MRAKOVIC, Bojan JOKANOVIC, Milos NENADOVIC, Manuela FERRARA, Ilija NASOV. Optical properties of titanium oxide films obtained by cathodic arc plasma deposition[J]. Plasma Science and Technology, 2017, 19(12): 125504. DOI: 10.1088/2058-6272/aa8806
    [4]Jiaojiao LI (李娇娇), Qianghua YUAN (袁强华), Xiaowei CHANG (常小伟), Yong WANG (王勇), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50kHz/ 33MHz dual-frequency atmospheric-pressure plasma jet[J]. Plasma Science and Technology, 2017, 19(4): 45505-045505. DOI: 10.1088/2058-6272/aa57e4
    [5]NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11
    [6]ZHOU Yongjie(周永杰), YUAN Qianghua(袁强华), WANG Xiaomin(王晓敏), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Optical Spectroscopic Investigation of Ar/CH 3 OH and Ar/N 2 /CH 3 OH Atmospheric Pressure Plasma Jets[J]. Plasma Science and Technology, 2014, 16(2): 99-103. DOI: 10.1088/1009-0630/16/2/03
    [7]WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15
    [8]WU Maoshui(吴茂水), XU Yu(徐雨), DAI Linjun(戴林君), WANG Tiantian(王恬恬), LI Xue(李雪), WANG Dexin(王德信), GUO Ying(郭颖), DING Ke(丁可), HUANG Xiaojiang(黄晓江), SHI Jianjun(石建军), ZHANG Jing(张菁). The Gas Nucleation Process Study of Anatase TiO 2 in Atmospheric Non-Thermal Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(1): 32-36. DOI: 10.1088/1009-0630/16/1/07
    [9]XIONG Yuqing, SANG Lijun, CHEN Qiang, YANG Lizhen, WANG Zhengduo, LIU Zhongwei. Electron Cyclotron Resonance Plasma-Assisted Atomic Layer Deposition of Amorphous Al2O3 Thin Films[J]. Plasma Science and Technology, 2013, 15(1): 52-55. DOI: 10.1088/1009-0630/15/1/09
    [10]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12

Catalog

    Article views (714) PDF downloads (3000) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return