Advanced Search+
ZHOU Suyun (周素云), CHEN Hui (陈辉), LI Yanfang (李艳芳). The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary[J]. Plasma Science and Technology, 2016, 18(1): 86-89. DOI: 10.1088/1009-0630/18/1/15
Citation: ZHOU Suyun (周素云), CHEN Hui (陈辉), LI Yanfang (李艳芳). The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary[J]. Plasma Science and Technology, 2016, 18(1): 86-89. DOI: 10.1088/1009-0630/18/1/15

The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary

Funds: supported by National Natural Science Foundation of China (No. 11247016), the Natural Science Foundation of Jiangxi Province, China (Nos. 2014ZBAB202001 and 20151BAB212010), and the Science Foundation for Youths of the Jiangxi Education Committee of China (No. GJJ14224)
More Information
  • Received Date: August 23, 2015
  • The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model. It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius. When laser intensity exceeds a critical value, the effect of ion motion reducing the wakefield rises, which becomes significant with a decrease of capillary radius. This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake. The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed.
  • 1 Yu M Y, Yu W, Chen Z Y, et al. 2003, Phys. Plasmas,10: 2468 2 Sheng Z M, Zhang J, and Yu W, 2003, Acta Phys.Sin., 52: 1 3 Lu W, Huang C, Zhou M M, et al. 2005, Phys. Plasmas, 12: 063101 4 Xu H, Yu W, Lu P X, et al. 2005, Phys. Plasmas, 12:013105 5 Popov K I, Rozmus W, Bychenkov V Yu, et al. 2010,Phys. Rev. Lett., 105: 195002 6 Zhang X, Shen B, Ji L, et al. 2010, Phys. Plasmas, 17:123102 7 Wang X, Yu W, Yu M Y, et al. 2009, Phys. Plasmas,16: 053107 8 Hosokai T, Kinoshita K, Ohkubo T, et al. 2006, Phys.Rev. E, 73: 036407 9 Andreev N E, Cassou K, Wojda F, et al. 2010, New Journal of Physics, 12: 045024 10 Oh Seong Y, Uhm Han S, Kang Hoonsoo, et al. 2010,J. Appl. Phys., 107: 103309 11 Cao L, Yu W, Yu M Y, et al. 2009. Phys. Plasmas, 16:093109 12 Leemans W P, Gonsalves A J, Mao H S, et al. 2014,Phys. Rev. Lett., 113: 245002 13 Yan F, Sheng Z M, Dong Q L, et al. 2006, J. Opt. Soc.Am., B, 23: 1190 14 Shen B F, Li Y L, Yu M Y, et al. 2007, Phys. Rev. E,76: 055402 15 Borghesi M, Bulanov S V, Esirkepov T Zh, et al. 2005,Phys. Rev. Lett., 94: 195003 16 Zhou S Y, Yu W, Yuan X, et al. 2012, Phys. Plasmas,19: 093101
  • Related Articles

    [1]Dan ZHAO (赵丹), Feng YU (于锋), Amin ZHOU (周阿敏), Cunhua MA (马存花), Bin DAI (代斌). High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode[J]. Plasma Science and Technology, 2018, 20(1): 14020-014020. DOI: 10.1088/2058-6272/aa861c
    [2]Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766
    [3]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [4]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [5]Jianyu FENG (冯建宇), Lifang DONG (董丽芳), Caixia LI (李彩霞), Ying LIU (刘莹), Tian DU (杜天), Fang HAO (郝芳). Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge[J]. Plasma Science and Technology, 2017, 19(5): 55401-055401. DOI: 10.1088/2058-6272/aa594a
    [6]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [7]H. I. A. QAZI, M. SHARIF, S. HUSSAIN, M. A. BADAR, H. AFZAL. Spectroscopic Study of a Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge with Anodic Alumina as the Dielectric[J]. Plasma Science and Technology, 2013, 15(9): 900-903. DOI: 10.1088/1009-0630/15/9/13
    [8]Imola MOLNAR, Judit PAPP, Alpar SIMON, Sorin Dan ANGHEL. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(6): 535-541. DOI: 10.1088/1009-0630/15/6/09
    [9]N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07
    [10]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06

Catalog

    Article views (259) PDF downloads (733) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return