JIN Shuo (金硕), RUAN Jiangjun (阮江军), DU Zhiye (杜志叶), ZHU Lin (朱琳), SHU Shengwen (舒胜文). Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine[J]. Plasma Science and Technology, 2016, 18(10): 998-1004. DOI: 10.1088/1009-0630/18/10/06
Citation:
JIN Shuo (金硕), RUAN Jiangjun (阮江军), DU Zhiye (杜志叶), ZHU Lin (朱琳), SHU Shengwen (舒胜文). Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine[J]. Plasma Science and Technology, 2016, 18(10): 998-1004. DOI: 10.1088/1009-0630/18/10/06
JIN Shuo (金硕), RUAN Jiangjun (阮江军), DU Zhiye (杜志叶), ZHU Lin (朱琳), SHU Shengwen (舒胜文). Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine[J]. Plasma Science and Technology, 2016, 18(10): 998-1004. DOI: 10.1088/1009-0630/18/10/06
Citation:
JIN Shuo (金硕), RUAN Jiangjun (阮江军), DU Zhiye (杜志叶), ZHU Lin (朱琳), SHU Shengwen (舒胜文). Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine[J]. Plasma Science and Technology, 2016, 18(10): 998-1004. DOI: 10.1088/1009-0630/18/10/06
1School of Electrical Engineering, Wuhan University, Wuhan 430072, China 2State Grid Hubei Electric Power Company Technology Training Center, Wuhan 430079, China 3Electric Power Research Institute of State Grid Fujian Electric Power ompany Limited, Fuzhou 350007, China
Funds: supported by National Natural Science Foundation of China (No. 51477120)
This paper proposes a new method to predict the corona onset voltage for a rod-plane air gap, based on the support vector machine (SVM). Because the SVM is not limited by the size, dimension and nonlinearity of the samples, this method can realize accurate prediction with few training data. Only electric field features are chosen as the input; no geometric parameter is included. Therefore, the experiment data of one kind of electrode can be used to predict the corona onset voltages of other electrodes with different sizes. With the experimental data obtained by ozone detection technology, and experimental data provided by the reference, the efficiency of the proposed method is validated. Accurate predicted results with an average relative less than 3% are obtained with only 6 experimental data.
Hu, Q.-L., She, Y.-C., Hu, W. et al. Propagation of circularly polarized electromagnetic wave in magnetized spin plasma. High Energy Density Physics, 2024.
DOI:10.1016/j.hedp.2024.101155
2.
Hu, Q.-L., She, Y.-C., Hu, W. et al. Comparison of Spin Force and Bohm Potential Force in Laser Pulse–Magnetized Spin Plasma. Journal of the Physical Society of Japan, 2024, 93(3): 034501.
DOI:10.7566/JPSJ.93.034501
3.
Hu, Q.-L., Hu, W., Xiao, J.-P. Spin effects on the relativistic strong EM wave modes in magnetized plasma* * The project supported by the National Natural Science Foundation of China under Grant No. 12065011, and the PhD Starting Fund program of TongRen University under Grant No. trxyDH2223.. Communications in Theoretical Physics, 2023, 75(6): 065502.
DOI:10.1088/1572-9494/acd3dc