Advanced Search+
QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
Citation: QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07

Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure

Funds: supported by National Natural Science Foundation of China (No. 11175037), National Natural Science Foundation for Young Scientists of China (No. 11305017) and Special Fund for Theoretical Physics (No. 11247239)
More Information
  • Received Date: December 16, 2015
  • The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.
  • 1 Font G. 2004, AIAA J., 44: 1572 2 Sosa R, Artana G. 2006, J. Electrostat., 64: 604 3 Grundmann S and Tropea C. 2009, Int. J. Heat Fluid Flow, 30: 394 4 Labergue A, Moreau E, Zouzou N, et al. 2007, J. Phys.D: Appl. Phys., 40: 674 5 Benard N, Moreau E, Griffin J, et al. 2010, Exp.Fluids, 48: 791 6 Jolibois J and Moreau E. 2009, IEEE Trans. Dielectr.Electr. Insul., 16: 758 7 Benard N and Moreau E. 2012, Appl. Phys. Lett., 100:193503 8 Kotsonis M and Ghaemi S. 2012, J. Phys. D: Appl.Phys., 45: 045204 9 Opaits D F, Neretti G and Zaidi S H. 2008, DBD Plasma Actuators Driven by a Combination of Low Frequency Bias Voltage and Nanosecond Pulses. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno,Nevada 10 Abe T, Takizawa Y, Sato S, et al. 2008, AIAA J., 46:2248 11 Hoskinson1 A R and Hershkowitz N. 2010, J. Phys. D:Appl. Phys., 43: 065205 12 Debien A, Benard N and Moreau E. 2012, J. Phys. D:Appl. Phys., 45: 215201 13 Enloe C L, Thomas E, McLaughlin T E, et al. 2004,AIAA J., 42: 595 14 Yang L, Yan H J, Qi X H, et al. 2015, IEEE Trans.Plasma Sci., 43: 3653 15 Forte M, Jolibois J, Moreau E, et al. 2007, Exp. Fluids,43: 917 16 Thomas F O, Thomas C C, Muhammad Iqbal, et al.2009, AIAA J., 47: 2169 17 Pons J, Moreau E and Touchard G. 2005, J. Phys. D:Appl. Phys., 38: 3635 18 Enloe C L, McLaughlin T E, Gregory J W, et al. 2008,Surface Potential and Electric Field Structure in the Aerodynamic Plasma Actuator. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada 19 Cristofolini A, Neretti G, and Borghi C A. 2013, J.Appl. Phys., 113: 143307 20 Cristofolini A, Neretti G, and Borghi C A. 2013, J.Appl. Phys., 114: 073303 21 Opaits D F, Shneider M N, Miles R B, et al. 2008,Phys. Plasmas, 15: 073505 22 Yan H J, Yang L, Qi X H, et al. 2015, J. Appl. Phys.,117: 063302 23 Yang L, Yan H J, Qi X H, et al. 2015, Physics of Plasmas, 22: 043518 24 Takeuchi N and Yasuoka K. 2009, IEEE Trans. Plasma Sci., 16: 364 25 Hoskinson A R, Oksuz L and Hershkowitz N. 2008,Appl. Phys. Lett., 93: 221501 26 Enloe C L, McLaughlin T E, Font G I, et al. 2006,AIAA J., 44: 1127 27 Enloe C L, McHarg M G and McLaughlin T E. 2008,J. Appl. Phys., 103: 073302 28 Font G I, Enloe C L, Newcomb J Y, et al. 2010, Effects of Oxygen Content on the Behavior of the Dielectric Barrier Discharge Aerodynamic Plasma Actuator.48th AIAA Aerospace Sciences Meeting, Orlando,Florida 29 B′ enard N and Moreau E. 2012, EHD Force and Electric Wind Produced by Surface Dielectric Barrier Discharge Plasma Actuators used for Airflow Control. 6th AIAA Flow Control Conference, New Orleans, Louisiana 30 Enloe C L, McHarg M G, Font G I. 2009, Plasma-induced force and self-induced drag in the dielectric barrier discharge aerodynamic plasma actuator. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando,Florida
  • Related Articles

    [1]Songru XIE (谢松汝), Yong HE (何勇), Dingkun YUAN (袁定琨), Zhihua WANG (王智化), Sunel KUMAR, Yanqun ZHU (朱燕群), Kefa CEN (岑可法). The effects of gas flow pattern on the generation of ozone in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(5): 55505-055505. DOI: 10.1088/2058-6272/aafc50
    [2]H ASHRAF, S Z A SHAH, H I A QAZI, M A KHAN, S HUSSAIN, M A BADAR, S NIAZ, M SHAFIQ. Electrical features of radio-frequency atmospheric pressure helium discharge with and without dielectric electrodes[J]. Plasma Science and Technology, 2019, 21(2): 25403-025403. DOI: 10.1088/2058-6272/aaede1
    [3]Zheng ZHANG (张政), Xueke CHE (车学科), Wangsheng NIE (聂万胜), Jinlong LI (李金龙), Tikai ZHENG (郑体凯), Liang LI (李亮), Qinya CHEN (陈庆亚), Zhi ZHENG (郑直). Study of vortex in flow fields induced by surface dielectric barrier discharge actuator at low pressure based on Q criterion[J]. Plasma Science and Technology, 2018, 20(1): 14006-014006. DOI: 10.1088/2058-6272/aa8e95
    [4]Shuangyan XU (徐双艳), Jinsheng CAI (蔡晋生), Yongsheng LIAN (练永生). Investigation of nanosecond-pulsed dielectric barrier discharge actuators with powered electrodes of different exposures[J]. Plasma Science and Technology, 2017, 19(9): 95504-095504. DOI: 10.1088/2058-6272/aa6f59
    [5]ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09
    [6]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [7]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [8]HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
    [9]LI Zhanguo (李战国), LI Ying (李颖), CAO Peng (曹鹏), ZHAO Hongjie (赵红杰). Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet[J]. Plasma Science and Technology, 2013, 15(7): 696-701. DOI: 10.1088/1009-0630/15/7/17
    [10]SONG Xinxin (宋新新), TAN Zhenyu (谭震宇), CHEN Bo (陈波), ZHANG Yuantao (张远涛), LI Qingquan (李清泉). Evolution of the pulse width in dielectric barrier atmospheric pressure discharge[J]. Plasma Science and Technology, 2012, 14(9): 808-812. DOI: 10.1088/1009-0630/14/9/07

Catalog

    Article views (378) PDF downloads (912) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return