Advanced Search+
XU Yan (徐艳), ZHANG Xiaoqing (张晓晴), YANG Chunhui (杨春辉), ZHANG Yanping (张燕平), YIN Yongxiang (印永祥). Recent Development of CO2 Reforming of CH4 by “Arc” Plasma[J]. Plasma Science and Technology, 2016, 18(10): 1012-1019. DOI: 10.1088/1009-0630/18/10/08
Citation: XU Yan (徐艳), ZHANG Xiaoqing (张晓晴), YANG Chunhui (杨春辉), ZHANG Yanping (张燕平), YIN Yongxiang (印永祥). Recent Development of CO2 Reforming of CH4 by “Arc” Plasma[J]. Plasma Science and Technology, 2016, 18(10): 1012-1019. DOI: 10.1088/1009-0630/18/10/08

Recent Development of CO2 Reforming of CH4 by “Arc” Plasma

Funds: supported by National Natural Science Foundation of China (No. 11375123) and the Research Project of Xuzhou Institute of Technology, China (No. XKY2015308)
More Information
  • Received Date: November 15, 2015
  • This paper presents a brief overview of CO2 reforming of CH4 (CRM) by various forms of “arc” plasma, which is more suitable to CRM, and the energy efficiency is used to evaluate different plasma processes specifically. According to the reported results, the arc thermal plasma with binode exhibited better performance. Moreover, the plasma CRM process was compared with the reported plasma steam reforming of CH4 (SRM) process, and the results showed that the former process has advantages on energy efficiency and CH4 consumption. Additionally, it is believed that the plasma CRM process would be competitive with the conventional SRM process in both energy efficiency and CO2 emission once the heat management is emphasized and the renewable power is used. Finally, a concept of plasma reactor for industrial application is proposed.
  • 1 Wilhelm D J, Simbeck D R, Karp A D, et al. 2001,Fuel Processing Technology, 71: 139 2 Adris A M, Pruden B B, Lim C J, et al. 1996, Canadian Journal of Chemical Engineering, 74: 177 3 Rostrup-Nielsen J R. 2000, Catalysis Today, 63: 159 4 Choudhary T V, Choudhary V R. 2008, Angewandte Chemie International Edition, 47: 1828 5 Bradford M C J, Vannice M A. 1999, Catalysis Reviews: Science and Engineering, 41: 1 6 Navarro R, Pawelec B, Alvarez-Galván M, et al. 2013,CO 2 : A Valuable Source of Carbon. Springer, p.45 7 Mota N, Alvarez-Galvan C, Navarro R, et al. 2011,Biofuels, 2: 325 8 Fan M S, Abdullah A Z, Bhatia S. 2009,Chemcatchem, 1: 192 9 Sun L Z, Tan Y S, Zhang Q D, et al. 2011,International Journal of Hydrogen Energy, 36: 12259 10 Lau C S, Tsolakis A, Wyszynski M L. 2011,International Journal of Hydrogen Energy, 36: 397 11 Lee Y J, Hong S I, Moon D J. 2011, Catalysis Today,174: 31 12 Chettapongsaphan C, Charojrochkul S,Assabumrungrat S, et al. 2010, Applied Catalysis A-General, 386: 194 13 Song C S, Wei P. 2004, Catalysis Today, 98: 463 14 Solov’ev S A, Gubareni Y V, Kurilets Y P, et al. 2012,Theoretical and Experimental Chemistry, 48: 199 15 Tao X, Bai M, Li X, et al. 2011, Progress in Energy and Combustion Science, 37: 113 16 Tendero C, Tixier C, Tristant P, et al. 2006,Spectrochimica Acta Part B, 61: 2 17 Gallon H J, Tu X, Whitehead J C. 2012, Plasma Processes & Polymers, 9: 90 18 Liu J L, Li X S, Zhu X, et al. 2013, Chemical Engineering Journal, 234: 240 19 Wang Q, Yan B H, Jin Y, et al. 2009, Energy & Fuels,23: 4196 20 Li D, Li X, Bai M, et al. 2009, International Journal of Hydrogen Energy, 34: 308 21 Zhang J Q, Yang Y J, Zhang J S, et al. 2002, Acta Chimica Sinica, 60: 1973 (in Chinese) 22 Fauchais P, Vardelle A. 1997, IEEE Transactions on Plasma Science, 25: 1258 23 Li M W, Xu G H, Tian Y L, et al. 2004, Journal of Physical Chemistry A, 108: 1687 24 Li M W, Tian Y L, Xu G H. 2007, Energy & Fuels,21: 2335 25 Li M W, Liu C P, Tian Y L, et al. 2006, Energy &Fuels, 20: 1033 26 Wang Q, Yan B H, Jin Y, et al. 2009, Plasma Chemistry and Plasma Processing, 29: 217 27 Wang Q, Yan B H, Jin Y, et al. 2009, Energy & Fuels,23: 4196 28 Zhang J Q, Zhang J S, Yang Y J, et al. 2003, Energy & Fuels, 17: 54 29 Li X S, Zhu B, Shi C, et al. 2011, Aiche Journal, 57:2854 30 Zhu B, Li X S, Shi C, et al. 2012, International Journal of Hydrogen Energy, 37: 4945 31 Fridman A, Nester S, Kennedy L A, et al. 1999,Progress in Energy and Combustion Science, 25: 211 32 Mutaf-Yardimci O, Saveliev A, Fridman A A, et al.2000, Journal of Applied Physics, 87: 1632 33 Indarto A, Choi J W, Lee H, et al. 2006, Energy, 31:2986 34 Bo Z, Yan J, Li X, et al. 2008, International Journal of Hydrogen Energy., 33: 5545 35 Chen Qi, Dai Wei, Tao Xuemei, et al. 2006, Plasma Science and Technology, 8: 181 36 Long H, Shang S, Tao X, et al. 2008, International Journal of Hydrogen Energy, 33: 5510 37 Bromberg L, Cohn D R, Rabinovich A, et al. 1998,Energy & Fuels, 12: 11 38 Boulos M I, Fauchais P, Pfender E. 1994, Thermal Plasmas. Plenum Press, New York 39 Lan T, Ran Y, Long H, et al. 2007, Natural Gas Industry, 27: 129 (in Chinese) 40 Sun Y, Nie Y, Wu A, et al. 2012, Plasma Science and Technology, 14: 252 41 Tao X, Qi F, Yin Y, et al. 2008, International Journal of Hydrogen Energy, 33: 1262 42 Tao X, Bai M, Wu Q, et al. 2009, International Journal of Hydrogen Energy, 34: 9373 43 Xu Y, Wei Q, Long H, et al. 2013, International Journal of Hydrogen Energy, 38: 1384 44 Na Z, Noam L. 2008, Energy, 33: 340 45 Daniele F, Andrea B. 2009, Energy Conversion and Management, 50: 2083 46 Li Y, Zhang N, Cai R. 2013, Energy, 58: 36 47 Liu Q, Zhang H, Yang R, et al. 2014, Journal of Harbin Engineering University, 35: 1294 (in Chinese) 48 Yan S, Li X, Zhong L, et al. 2011, Acta Energiae Solaris Sinica, 32: 766 (in Chinese) 49 Zhang X, Wang B, Liu Y, et al. 2009, Chinese Journal of Chemical Engineering, 17: 625 (in Chinese) 50 Jia M. 2012, The Experimental and Numerical Research of Methane Steam Reforming in Plasma [Ph.D]. Harbin Engineering University Harbin (in Chinese) 51 Wang Y, Tsai C, Chang W, et al. 2010, International Journal of Hydrogen Energy, 35: 135 52 Pati? no P, P′ erez Y, Caetano M. 2005, Fuel, 84: 2008 53 Bromberga L, Cohna D R, Rabinovicha A, et al. 2000,International Journal of Hydrogen Energy, 25: 1157 54 Wang Q, Spasova B, Hessel V, et al. 2015, Chemical Engineering Journal, 262: 766 55 Blom P W E, Basson G W. 2013, International Journal of Hydrogen Energy, 38: 5684 56 OECD. 2014, Technology and Industry Policy Papers.OECD Publishing 57 Ju Y, Sun W. 2015, Progress in Energy and Combustion Science, 48: 21 58 Rasi S, Veijanen A, Rintala J. 2007, Energy, 32: 1375 59 Linga Reddy E, Biju V M, Subrahmanyam C. 2012,Applied Energy, 95: 87 60 Tong X. 2013, Biogas Deoxidation and Desulfurization Using DBD Plasma [Ph.D]. Zhejiang University of Technology, Hangzhou (in Chinese) 61 Chang J. 2001, Science and Technology of Advanced Materials, 2: 571
  • Related Articles

    [1]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [2]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [3]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [4]LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
    [5]ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
    [6]A. SAEED, A. W. KHAN, M. SHAFIQ, F. JAN, M. ABRAR, M. ZAKA-UL-ISLAM, M. ZAKAULLAH. Investigation of 50 Hz Pulsed DC Nitrogen Plasma with Active Screen Cage by Trace Rare Gas Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2014, 16(4): 324-328. DOI: 10.1088/1009-0630/16/4/05
    [7]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
    [8]LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10
    [9]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02
    [10]N. U. REHMAN, F. U. KHAN, S. NASEER, G. MURTAZA, S. S. HUSSAIN, I. AHMAD, M. ZAKAULLAH. Trace-Rare-Gas Optical Emission Spectroscopy of Nitrogen Plasma Generated at a Frequency of 13.56 MHz[J]. Plasma Science and Technology, 2011, 13(2): 208-212.

Catalog

    Article views (355) PDF downloads (648) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return