Advanced Search+
WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04
Citation: WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04

Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device

Funds: supported by National Natural Science Foundation of China (Nos. 11575183, 11175177)
More Information
  • Received Date: December 24, 2015
  • Plasmas containing ion beams have various applications both in plasma technology and in fundamental research. The ion beam energy and flux are the two factors characterizing the beam properties. Previous studies have not achieved the independent adjustment of these two parameters. In this paper, an ion-beam-background-plasma system was produced with hot-cathode discharge in a double plasma device separated by two adjacent grids, with which the beam energy and flux ratio (the ratio between the beam flux and total ion flux) can be controlled independently. It is shown that the discharge voltage (i.e., voltage across the hot-cathode and anode) and the voltage drop between the two separation grids can be used to effectively control the beam energy while the flux ratio is not affected by these voltages. The flux ratio depends sensitively on hot-filaments heating current whose influence on the beam energy is relatively weak, and thus enabling approximate control of the flux ratio
  • 1 Lieberman M A, Lichtenberg A J. 1994, Principles of Plasma Discharges and Materials Processing. John Wiley & Sons, New York, p.472 2 Roth J R. 1995, Industrial Plasma Engineering.Institute of Physics Publishing, Bristol, UK, p.189 3 Dwivedi N, Kumar S, Malik Hitendra K. 2012,Materials Chemistry and Physics, 134: 7 4 Dwivedi N, Kumar S, Malik Hitendra K. 2013, Applied Surface Science, 274: 282 5 Dwivedi N, Kumar S, Rawal I, et al. 2014, Applied Surface Science, 300: 141 6 Harhausen J, Brinkmann R P, Foest R, et al. 2012,Plasma Sources Sci. Technol., 21: 035012 7 Vizir A V, Shandrikov M V, Oks E M. 2008, Rev. Sci.Instrum., 79: 02B719 8 Xu S H, Ren Z X. 2003, Plasma Sci. Technol., 5: 1841 9 Cheng J F, Wu X M, Zhuge L J. 2004, Plasma Sci.Technol., 6: 2237 10 Abdelrahman M M, El-Khabeary H. 2009, Plasma Sci.Technol., 11: 604 11 Gudmundsson J T. 1999, Plasma Sources Sci.Technol., 8: 58 12 Logue M D, Shin H, Zhu W, et al. 2012, Plasma Sources Sci. Technol., 21: 065009 13 Rawal D S, Sehgal B K, Muralidharan R, et al. 2011,Plasma Sci. Technol., 13: 223 14 Rawal D S, Malik Hitendra K, Agarwal Vanita R, et al.2012, IEEE Trans. Plasma Sci., 40: 2211 15 Rapson C, Grulke O, Matyash K, et al. 2014, Phys.Plasmas, 21: 052103 16 Singh S, Malik Hitendra K, Nishida Y. 2013, Phys.Plasmas, 20: 102109 17 Malik Hitendra K, Singh S. 2013, Phys. Plasmas, 20:052115 18 Allan S Y, McKenzie D R, Bilek M M M. 2010, Plasma Sources Sci. Technol., 19: 045002 19 Bailung H, Pal A R, Adhikary N C, et al. 2006, Plasma Sources Sci. Technol., 15: 59 20 Harvey Z, Thakur S C, Hansen A, et al. 2008, Rev.Sci. Instrum., 79: 10F314 21 Aziz F, Malik H K, Enge S, et al. 2011, Plasma Phys.Control. Fusion, 53: 065012 22 Xiao D L, Ma J X, Li Y R, et al. 2007, Phys. Plasmas,14: 092104 23 Nakamura Y, Bailung H, Ichiki R. 2004, Phys.Plasmas, 11: 3795 24 Franck C, Klinger T, Piel A, et al. 2001, Phys.Plasmas, 8: 4271 25 Honzawa T, Nagasawa T. 1997, Phys. Plasmas, 4:3954 26 Sarma A, Bailung H, Chutia J. 1996, Phys. Plasmas,3: 3245 27 Pal A R, Boruah D, Bailung H, et al. 2002, Phys. Lett.A, 305: 419 28 Wei Z, Ma J X. 2016, Phys. Plasmas, 23: 023502 29 Mishra M K, Phukan A, Chakraborty M, et al. 2007,Phys. Lett. A, 365: 135 30 Mishra M K, Phukan A, Chakraborty M, et al. 2008,Eur. Phys. J. D, 46: 303 31 Bailung H, Sharma S K, Nakamura Y. 2010, Phys.Plasmas, 17: 062103 32 Ma J X, Li Y F, Li J J, et al. 2005, Journal of Vacuum Science and Technology (China), 25: 138 (in Chinese) 33 Ma J X, Li Y F, Xiao D L, et al. 2005, Rev. Sci.Instrum., 76: 062205 34 Smith J R, Hershkowitz N, Coakley P. 1979, Rev. Sci.Instrum., 50: 210
  • Related Articles

    [1]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [2]Xiaochun MA (马小春), Xiaogang CAO (曹小岗), Lei HAN (韩磊), Zhiyan ZHANG (张志艳), Jianjun WEI (韦建军), Fujun GOU (芶富均). Characterization of high flux magnetized helium plasma in SCU-PSI linear device[J]. Plasma Science and Technology, 2018, 20(2): 25104-025104. DOI: 10.1088/2058-6272/aa936e
    [3]Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e
    [4]Ming ZENG (曾明), Ovidiu TESILEANU. High-flux electron beams from laser wakefield accelerators driven by petawatt lasers[J]. Plasma Science and Technology, 2017, 19(7): 70502-070502. DOI: 10.1088/2058-6272/aa6437
    [5]Hailin ZHAO (赵海林), Tao LAN (兰涛), Adi LIU (刘阿娣), Defeng KONG (孔德峰), Huagang SHEN (沈华刚), Jie WU (吴捷), Wandong LIU (刘万东), Changxuan YU (俞昌旋), Wei ZHANG (张炜), Guosheng XU (徐国盛), Baonian WAN (万宝年). Zonal flow energy ratio evolution during L-H and H-L transitions in EAST plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35101-035101. DOI: 10.1088/2058-6272/19/3/035101
    [6]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [7]Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13
    [8]CAO Lihua(曹莉华), WANG Huan(王欢), ZHANG Hua(张华), LIU Zhanjun(刘占军), WU Junfeng(吴俊峰), LI Baiwen(李百文). Two-Dimensional Hybrid Model for High-Current Electron Beam Transport in a Dense Plasma[J]. Plasma Science and Technology, 2014, 16(11): 1007-1012. DOI: 10.1088/1009-0630/16/11/03
    [9]WANG Qing(王庆), BA Dechun(巴德纯), MING Yue(明悦), XU Lin(徐林), GUO Deyu(郭德宇). Low Temperature Nitriding of 304 Austenitic Stainless Steel Using RF-ICP Method: the Role of Ion Beam Flux Density[J]. Plasma Science and Technology, 2014, 16(10): 960-963. DOI: 10.1088/1009-0630/16/10/10
    [10]TAO Ling(陶玲), HU Chundong(胡纯栋), XIE Yuanlai(谢远来). Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System[J]. Plasma Science and Technology, 2014, 16(5): 512-520. DOI: 10.1088/1009-0630/16/5/12

Catalog

    Article views (304) PDF downloads (597) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return