Advanced Search+
PAN Jie (潘杰), LI Li (李莉), WANG Yunuan (王玉暖), XIU Xianwu (修显武), WANG Chao (王超), SONG Yuzhi (宋玉志). Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges[J]. Plasma Science and Technology, 2016, 18(11): 1081-1088. DOI: 10.1088/1009-0630/18/11/05
Citation: PAN Jie (潘杰), LI Li (李莉), WANG Yunuan (王玉暖), XIU Xianwu (修显武), WANG Chao (王超), SONG Yuzhi (宋玉志). Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges[J]. Plasma Science and Technology, 2016, 18(11): 1081-1088. DOI: 10.1088/1009-0630/18/11/05

Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges

Funds: supported by Natural Science Foundation of Shandong Province, China (No. ZR2015AQ008), and Project of Shandong Province Higher Educational Science and Technology Program of China (No. J15LJ04)
More Information
  • Received Date: January 18, 2016
  • Atmospheric-pressure argon plasmas have received increasing attention due to their high potential in many industrial and biomedical applications. In this paper, a 1-D fluid model is used for studying the particle density characteristics of the argon plasmas generated by the pulsed dielectric barrier discharges. The temporal evolutions of the axial particle density distributions are illustrated, and the influences of changing the main discharge conditions on the averaged particle densities are researched by independently varying the various discharge conditions. The calculation results show that the electron density and the ion density reach two peaks near the momentary cathodes during the rising and the falling edges of the pulsed voltage. Compared with the charged particle densities, the densities of the resonance state atom Ar r and the metastable state atom Arm have more uniform axial distributions, reach higher maximums and decay more slowly. During the platform of the pulsed voltage and the time interval between the pulses, the densities of the excited state atom Ar are far lower than those of the Arr or the Arm . The averaged particle densities of the different considered particles increase with the increases of the amplitude and the frequency of the pulsed voltage. Narrowing the discharge gap and increasing the relative dielectric constant of the dielectric also contribute to the increase of the averaged particle densities. The effects of reducing the discharge gap distance on the neutral particle densities are more significant than the influences on the charged particle densities.
  • 1 Iza F, Lee J K, Kong M G. 2007, Phys. Rev. Lett., 99:075004 2 Kogelschatz U. 2002, IEEE Trans. Plasma Sci., 30:1400 3 Massiness F, Sarra-Bournet C, Fanelli F, et al. 2012,Plasma Process. Polym., 9: 1041 4 Mariotti D, Patel J, Svrcek V, et al. 2012, Plasma Process. Polym., 9: 1074 5 Pavlovich M J, Chen Z, Sakiyama Y, et al. 2013,Plasma Process. Polym., 10: 69 6 Tsyganov D, Pancheshnyi S. 2012, Plasma Sources Sci.Technol., 21: 065010 7 Laroussi M, Lu X, Kolobov V, et al. 2004, J. Appl.Phys., 96: 3028 8 Shao T, Long K, Zhang C, et al. 2008, J. Phys. D:Appl. Phys., 41: 215203 9 Zhang S, Wang W C, Jiang P C, et al. 2013, J. Appl.Phys., 114: 163301 10 MacLachlan C S, Potts H E, Diver D A. 2013, Plasma Sources Sci. Technol., 22: 015025 11 Martens T, Bogaerts A, Dijk J. 2010, Appl. Phys.Lett., 96: 131503 12 Pan J, Tan Z Y,Wang X L, et al. 2014, Plasma Sources Sci. Technol., 23: 065019 13 Chen B, Tan Z, Song X, et al. 2011, IEEE Trans.Plasma Sci., 39: 1949 14 Richards A D, Thompson B E, Sawin H H. 1987, Appl.Phys. Lett., 50: 492 15 Lee M H, Chung C W. 2005, Phys. Plasmas, 12:073501 16 Brok W J M, Dijk J, Bowden M D, et al. 2003, J.Phys. D: Appl. Phys., 36: 1967 17 Bogaerts A, Gijbels R. 1995, Phys. Rev. A, 52: 3743 18 Kulikovsky A A. 1994, J. Phys. D: Appl. Phys., 27:2556 19 Balcon N, Hagelaar G J M, Boeuf J P. 2008, IEEE Trans. Plasma Sci., 36: 2782 20 Shi H, Wang Y, Wang D. 2008, Phys. Plasmas, 15:122306 21 Lu X, Xiong Q, Xiong Z, et al. 2009, IEEE Trans.Plasma Sci., 37: 647 22 Broks B H P, Brok W J M, Remy J, et al. 2005, Phys.Rev. E, 71: 036409
  • Related Articles

    [1]Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65
    [2]Dan ZHAO (赵丹), Feng YU (于锋), Amin ZHOU (周阿敏), Cunhua MA (马存花), Bin DAI (代斌). High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode[J]. Plasma Science and Technology, 2018, 20(1): 14020-014020. DOI: 10.1088/2058-6272/aa861c
    [3]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [4]Jianyu FENG (冯建宇), Lifang DONG (董丽芳), Caixia LI (李彩霞), Ying LIU (刘莹), Tian DU (杜天), Fang HAO (郝芳). Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge[J]. Plasma Science and Technology, 2017, 19(5): 55401-055401. DOI: 10.1088/2058-6272/aa594a
    [5]Fangmin HUANG (黄芳敏), Zhouyang LONG (龙洲洋), Sa LIU (刘飒), Zhenglong QIN (秦正龙). Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose[J]. Plasma Science and Technology, 2017, 19(4): 45504-045504. DOI: 10.1088/2058-6272/aa4c20
    [6]Jianyang YU (俞建阳), Huaping LIU (刘华坪), Ruoyu WANG (王若玉), Fu CHEN (陈浮). Numerical study of the flow structures in flat plate and the wall-mounted hump induced by the unsteady DBD plasma[J]. Plasma Science and Technology, 2017, 19(1): 15502-015502. DOI: 10.1088/1009-0630/19/1/015502
    [7]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [8]JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18
    [9]H. I. A. QAZI, M. SHARIF, S. HUSSAIN, M. A. BADAR, H. AFZAL. Spectroscopic Study of a Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge with Anodic Alumina as the Dielectric[J]. Plasma Science and Technology, 2013, 15(9): 900-903. DOI: 10.1088/1009-0630/15/9/13
    [10]N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07

Catalog

    Article views (272) PDF downloads (793) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return