Advanced Search+
LIU Yukai (刘煜锴), GAO Li (高丽), LIU Haiqing (刘海庆), YANG Yao (杨曜), GAO Xiang (高翔), J-TEXT Team. Fast Data Processing of a Polarimeter-Interferometer System on J-TEXT[J]. Plasma Science and Technology, 2016, 18(12): 1143-1147. DOI: 10.1088/1009-0630/18/12/01
Citation: LIU Yukai (刘煜锴), GAO Li (高丽), LIU Haiqing (刘海庆), YANG Yao (杨曜), GAO Xiang (高翔), J-TEXT Team. Fast Data Processing of a Polarimeter-Interferometer System on J-TEXT[J]. Plasma Science and Technology, 2016, 18(12): 1143-1147. DOI: 10.1088/1009-0630/18/12/01

Fast Data Processing of a Polarimeter-Interferometer System on J-TEXT

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB106000, 2014GB106002, and 2014GB106003) and National Natural Science Foundation of China (Nos. 11275234, 11375237 and 11505238) and Scientific Research Grant of Hefei Science Center of CAS (No. 2015SRG-HSC010)
More Information
  • Received Date: January 21, 2016
  • A method of fast data processing has been developed to rapidly obtain evolution of the electron density profile for a multichannel polarimeter-interferometer system (POLARIS) on J-TEXT. Compared with the Abel inversion method, evolution of the density profile analyzed by this method can quickly offer important information. This method has the advantage of fast calculation speed with the order of ten milliseconds per normal shot and it is capable of processing up to 1 MHz sampled data, which is helpful for studying density sawtooth instability and the disruption between shots. In the duration of a flat-top plasma current of usual ohmic discharges on J-TEXT, shape factor u is ranged from 4 to 5. When the disruption of discharge happens, the density profile becomes peaked and the shape factor u typically decreases to 1.
  • 1 Veron D. 1979, Infrared and Millimeter Waves, 2: 67 2 Zhuang G, Gentle K W, Rao B, et al. 2013, Nuclear Fusion, 53: 104014 3 Chen J, Zhuang G, Wang Z J, et al. 2012, Review of Scientific Instruments, 83: 10E306 4 Zhuang G, Chen J, Li Q, et al. 2013, Journal of Instrumentation, 8: C10019 5 Dodel G, Kunz W. 1978, Infrared Physics, 18: 773 6 Rommers J H, Donne A J H, Karelse F A, et al. 1997,Review of Scientific Instruments, 68: 1217 7 Zhuang G, Pan Y, Hu X W, et al. 2011, Nuclear Fusion, 51: 094020 8 Chen J, Zhuang G, Li Q, et al. 2014, Review of Scientific Instruments, 85: 11D303 9 Gao X, Guo Q L. 1990, International Journal of Infrared and Millimeter Waves, 11: 1399 10 Rao B, Wang G, Ding Y H, et al. 2014, Fusion Engineering and Design, 89: 378 11 Hu Q, Zhuang G, Yu Q, et al. 2014, Nuclear Fusion, 54: 064013 12 Hender T C, Wesley J C, Bialek J, et al. 2007, Nuclear Fusion, 47: S128
  • Related Articles

    [1]Kang AN, Shuai ZHANG, Siwu SHAO, Jinlong LIU, Junjun WEI, Liangxian CHEN, Yuting ZHENG, Qing LIU, Chengming LI. Effects of the electric field at the edge of a substrate to deposit a Ø100 mm uniform diamond film in a 2.45 GHz MPCVD system[J]. Plasma Science and Technology, 2022, 24(4): 045502. DOI: 10.1088/2058-6272/ac4deb
    [2]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [3]LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
    [4]WU Zhonghang(吴忠航), LI Zebin(李泽斌), JU Jiaqi(居家奇), HE Kongduo(何孔多), YANG Xilu(杨曦露), YAN Hang(颜航), CHEN Zhenliu(陈枕流), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Experimental Investigation of Surface Wave Plasma Excited by a Cylindrical Dielectric Rod[J]. Plasma Science and Technology, 2014, 16(2): 118-122. DOI: 10.1088/1009-0630/16/2/06
    [5]WANG Huan(王欢), YANG Lizhen(杨丽珍), CHEN Qiang(陈强). Investigation of Microwave Surface-Wave Plasma Deposited SiO x Coatings on Polymeric Substrates[J]. Plasma Science and Technology, 2014, 16(1): 37-40. DOI: 10.1088/1009-0630/16/1/08
    [6]FU Wenjie (傅文杰), YAN Yang (鄢扬). Analysis of High-Power Microwave Propagation in a Magnetized Plasma Filled Waveguide[J]. Plasma Science and Technology, 2013, 15(10): 974-978. DOI: 10.1088/1009-0630/15/10/03
    [7]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [8]LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05
    [9]CHEN Zhaoquan (陈兆权), LIU Minghai (刘明海), HU Yelin (胡业林), ZHENG Xiaoliang (郑晓亮), LI Ping (李平), XIA Guangqing (夏广庆). Character Diagnosis for Surface-Wave Plasmas Excited by Surface Plasmon Polaritons[J]. Plasma Science and Technology, 2012, 14(8): 754-758. DOI: 10.1088/1009-0630/14/8/13
    [10]PANG Jianhua (庞见华), LU Wenqi (陆文琪), XIN Yu (辛煜), WANG Hanghang (王行行), HE Jia (贺佳), XU Jun (徐军). Plasma Diagnosis for Microwave ECR Plasma Enhanced Sputtering Deposition of DLC Films[J]. Plasma Science and Technology, 2012, 14(2): 172-176. DOI: 10.1088/1009-0630/14/2/17

Catalog

    Article views (275) PDF downloads (682) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return