Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy
-
Graphical Abstract
-
Abstract
Detection of oil pollution in soil has been carried out using laser-induced breakdown spectroscopy (LIBS). A pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1,064 nm, 8 ns, 200 mJ) was focused onto pelletized soil samples. Emission spectra were obtained from oil-contaminated soil and clean soil. The contaminated soil had almost the same spectrum profile as the clean soil and contained the same major and minor elements. However, a C–H molecular band was clearly detected in the oil-contaminated soil, while no C–H band was detected in the clean soil. Linear calibration curve of the C–H molecular band was successfully made by using a soil sample containing various concentrations of oil. The limit of detection of the C–H band in the soil sample was 0.001 mL/g. Furthermore, the emission spectrum of the contaminated soil clearly displayed titanium (Ti) lines, which were not detected in the clean soil. The existence of the C–H band and Ti lines in oil-contaminated soil can be used to clearly distinguish contaminated soil from clean soil. For comparison, the emission spectra of contaminated and clean soil were also obtained using scanning electron microscope-energy dispersive X-ray (SEM/EDX) spectroscopy, showing that the spectra obtained using LIBS are much better than using SEM/EDX, as indicated by the signal to noise ratio (S/N ratio).
-
-