Advanced Search+
TANG Jingfeng (唐井峰), WEI Liqiu (魏立秋), HUO Yuxin (霍玉鑫), SONG Jian (宋健), YU Daren (于达仁), ZHANG Chaohai (张潮海). Effect of Airflows on Repetitive Nanosecond Volume Discharges[J]. Plasma Science and Technology, 2016, 18(3): 273-277. DOI: 10.1088/1009-0630/18/3/10
Citation: TANG Jingfeng (唐井峰), WEI Liqiu (魏立秋), HUO Yuxin (霍玉鑫), SONG Jian (宋健), YU Daren (于达仁), ZHANG Chaohai (张潮海). Effect of Airflows on Repetitive Nanosecond Volume Discharges[J]. Plasma Science and Technology, 2016, 18(3): 273-277. DOI: 10.1088/1009-0630/18/3/10

Effect of Airflows on Repetitive Nanosecond Volume Discharges

Funds: supported by National Natural Science Foundation of China (Nos. 51006027, 51437002, and 51477035)
More Information
  • Received Date: September 08, 2015
  • Atmospheric pressure discharges excited by repetitive nanosecond pulses have at¬tracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive nanosecond pulse generator. Under different experiment conditions, the applied voltages, discharge currents, and discharge images are recorded. The plasma images presented here indicate that the volume discharge modes vary with airflow speeds, and a diffuse and homogeneous volume discharge occurs at the speed of more than 35 m/s. The role of airflows provides different effects on the 2-stage pulse discharges. The 1st pulse currents nearly maintain consistency for different airflow speeds. However, the 2nd pulse current has a change trend of first decreasing and then rapidly increasing, and the value difference for 2nd pulse cur¬rents is about 20 A under different airflows. In addition, the experimental results are discussed according to the electrical parameters and discharge images.
  • 1 Lu X P, Yan P, Ren C S, et al. 2011, Scientia Sinica:Phys., Mech. & Astron., 41: 801 (in Chinese) 2 Namihira T, Tsukamoto S, Wang D, et al. 2000, IEEE Transactions on Plasma Science, 28: 434 3 Shao T, Long K, Zhang C, et al. 2008, Journal of Physics D: Applied Physics, 41: 215203 4 Kostyrya I D, Skakun V S, Tarasenko V F, et al. 2004,Tech. Phys., 49: 987 5 Repev A G, Repin P B, Danchenko E G. 2008, Tech.Phys., 53: 858 6 Luo H Y, Liang Z, Wang X X, et al. 2008, Journal of Physics D: Applied Physics, 41: 205205 7 Dong L F, Li S F, Liu F C, et al. 2005, Transactions of Beijing Institute of Technology, 25: 8 8 Wang Z, Ren C S, Nie Q Y, et al. 2009, Plasma Science and Technology, 11: 177 9 Pang L, Zhang Q, Ren B, et al. 2011, IEEE Transactions on Plasma Science, 39: 2922 10 Pavon S, Dorier J, Hollenstein C, et al. 2008, Journal of Physics D: Applied Physics, 40: 1733 11 Tang J F, Wei L Q, Li N, et al. 2014, IEEE Transactions on Plasma Science, 42: 753 12 Li Y H, Wang J, Wang C, et al. 2010, Plasma Sources Science and Technology, 19: 025016 13 Kriegseis J, Grundmann S, Tropea C. 2012, Physics of Plasmas, 19: 073509 14 Shao T, Sun G, Yan P, et al. 2006, Journal of Physics D: Applied Physics, 39: 2192 15 Pai D, Lacoste D A, Laux C O. 2008, IEEE Transactions on Plasma Science, 36: 974 16 Tardiveau P, Moreau N, Bentaleb S. 2009, Journal of Physics D: Applied Physics, 42: 175202
  • Related Articles

    [1]Fuqiong WANG, Yunfeng LIANG, Yingfeng XU, Xuejun ZHA, Fangchuan ZHONG, Songtao MAO, Yanmin DUAN, Liqun HU. SOLPS-ITER drift modeling of neon impurity seeded plasmas in EAST with favorable and unfavorable toroidal magnetic field direction[J]. Plasma Science and Technology, 2023, 25(11): 115102. DOI: 10.1088/2058-6272/ace026
    [2]Min WANG, Qingmei XIAO, Xiaogang WANG, Daoyuan LIU. Numerical studies of the influence of seeding locations on D-SOL plasmas in EAST[J]. Plasma Science and Technology, 2022, 24(1): 015101. DOI: 10.1088/2058-6272/ac320f
    [3]WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03
    [4]YUAN Guoliang(袁国梁), YANG Qingwei(杨青巍), YANG Jinwei(杨进蔚), SONG Xianying(宋先瑛), LI Xu(李旭), WU Huajian(吴华剑), WANG Zhiqiang(王志强). Fusion Neutron Flux Detector for the ITER[J]. Plasma Science and Technology, 2014, 16(2): 168-171. DOI: 10.1088/1009-0630/16/2/14
    [5]LEI Mingzhun (雷明准), SONG Yuntao (宋云涛), WANG Songke (王松可), WANG Xianwei (汪献伟). Electromagnetic and Stress Analyses of the ITER Equatorial Thermal Shield[J]. Plasma Science and Technology, 2013, 15(8): 830-833. DOI: 10.1088/1009-0630/15/8/22
    [6]YANG Yu (杨愚), S. MARUYAMA, G. KISS, LI Wei (李伟), JIANG Tao (江涛), LI Bo (李波). Conceptual Design of the ITER Gas Injection System[J]. Plasma Science and Technology, 2013, 15(3): 287-290. DOI: 10.1088/1009-0630/15/3/19
    [7]P Klaywittaphat, T Onjun. Scaling of the density peak with pellet injection in ITER[J]. Plasma Science and Technology, 2012, 14(12): 1035-1040. DOI: 10.1088/1009-0630/14/12/01
    [8]SHENG Zhicai(Cheng-Zhi-Cai-), FU Peng (Fu-Feng-), XU Xiuwei (Hu-Liu-Wei-). Dynamic performance of the ITER reactive power compensation system[J]. Plasma Science and Technology, 2011, 13(5): 637-640.
    [9]KANG Weishan(康伟山), CHEN Jiming(谌继明), WU Jihong(吴继红). Analysis and Optimization of Cooling Channels in ITER Blanket Module[J]. Plasma Science and Technology, 2010, 12(5): 628-631.
    [10]WANG Junyi (王君一), CHEN Yiping(陈一平). Study of Carbon Impurity Transport at SOL in EAST[J]. Plasma Science and Technology, 2010, 12(5): 535-539.

Catalog

    Article views (681) PDF downloads (1270) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return