Advanced Search+
Amel E. A. ELABID, GUO Ying (郭颖), SHI Jianjun (石建军), DING Ke (丁可), ZHANG Jing (张菁). Synergistic Effect of Atmospheric Pressure Plasma Pre-Treatment on Alkaline Etching of Polyethylene Terephthalate Fabrics and Films[J]. Plasma Science and Technology, 2016, 18(4): 346-352. DOI: 10.1088/1009-0630/18/4/03
Citation: Amel E. A. ELABID, GUO Ying (郭颖), SHI Jianjun (石建军), DING Ke (丁可), ZHANG Jing (张菁). Synergistic Effect of Atmospheric Pressure Plasma Pre-Treatment on Alkaline Etching of Polyethylene Terephthalate Fabrics and Films[J]. Plasma Science and Technology, 2016, 18(4): 346-352. DOI: 10.1088/1009-0630/18/4/03

Synergistic Effect of Atmospheric Pressure Plasma Pre-Treatment on Alkaline Etching of Polyethylene Terephthalate Fabrics and Films

More Information
  • Received Date: August 21, 2015
  • Dyeing of PET materials by traditional methods presents several problems. Plasma technology has received enormous attention as a solution for the environmental problems related with textile surface modifications, and there has been a rapid development and commercializa?tion of plasma technology over the past decade. In this work, the synergistic effect of atmospheric pressure plasma on alkaline etching and deep coloring of dyeing properties on polyethylene terephthalate (PET) fabrics and films was investigated. The topographical changes of the PET surface were investigated by atomic force microscopy (AFM) images, which revealed a smooth surface morphology of the untreated sample whereas a high surface roughness for the plasma and/or alkaline treated samples. The effects of atmospheric pressure plasma on alkaline etching of the structure and properties of PET were investigated by means of differential scanning calorimetry (DSC), the main objective of performing DSC was to investigate the effect of the plasma pre-treatment on the Tg and Tm. Using a tensile strength tester YG065H and following a standard procedure the maximum force and elongation at maximum force of PET materials was investigated. Oxygen and argon plasma pre-treatment was found to increase the PET fabric weight loss rate. The color strength of PET fabrics was increased by various plasma pre-treatment times. The penetration of plasma and alkaline reactive species deep into the PET structure results in better dyeability and leaves a significant effect on the K/S values of the plasma pre-treated PET. It indicated that plasma pre-treatment has a great synergistic effect with the alkaline treatment of PET.
  • Related Articles

    [1]Junjie ZHANG, Xin ZHANG, Guoliang PENG, Zeping REN. A GPU-based general numerical framework for plasma simulations in terms of microscopic kinetic equations with full collision terms[J]. Plasma Science and Technology, 2022, 24(5): 054007. DOI: 10.1088/2058-6272/ac5f39
    [2]M S ALAM, M R TALUKDER. Head-on collision between single- and multi-soliton heavy ion acoustic waves in multi-ion plasmas[J]. Plasma Science and Technology, 2019, 21(9): 95302-095302. DOI: 10.1088/2058-6272/ab20dc
    [3]Wei WANG (王玮), Zhengxiong WANG (王正汹), Jiquan LI (李继全), Yasuaki KISHIMOTO, Jiaqi DONG (董家齐), Shu ZHENG (郑殊). Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects[J]. Plasma Science and Technology, 2018, 20(7): 75101-075101. DOI: 10.1088/2058-6272/aab48f
    [4]Yanqing HUANG (黄艳清), Tianyang XIA (夏天阳), Bin GUI (桂彬). Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes[J]. Plasma Science and Technology, 2018, 20(4): 45101-045101. DOI: 10.1088/2058-6272/aaa4f1
    [5]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [6]LI Shuang(李双), FENG Shengqin (冯笙琴). Gluon Saturation Model with Geometric Scaling for Net-Baryon Distributions in Relativistic Heavy Ion Collisions[J]. Plasma Science and Technology, 2012, 14(7): 598-602. DOI: 10.1088/1009-0630/14/7/07
    [7]YIN Hongjie (尹洪杰), M. J. EFAAF (安飞), ZHANG Weining (张卫宁). Two-Pion Interferometry for the Granular Source in Heavy Ion Collisions at LHC Energies[J]. Plasma Science and Technology, 2012, 14(6): 445-448. DOI: 10.1088/1009-0630/14/6/01
    [8]MA Chunwang (马春旺), ZHANG Yanfang (张艳芳), JIN Chan(金婵). Isospin Dependence of Fragmentation Cross Sections in Collisions of Neutron-Rich Ca Isotopes with 12C[J]. Plasma Science and Technology, 2012, 14(5): 396-398. DOI: 10.1088/1009-0630/14/5/12
    [9]Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331.
    [10]XIANG Jiang, LIU Zhanjun, ZHENG Chunyang. Effects of Electron-Ion Collisions on Stimulated Raman Backward Scattering Under Different Electron Densities[J]. Plasma Science and Technology, 2011, 13(1): 40-43.

Catalog

    Article views (392) PDF downloads (966) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return