Advanced Search+
DONG Yunsong (董云松), YANG Jiamin (杨家敏), SONG Tianming (宋天明), ZHU Tuo (朱托), HUANG Chengwu (黄成武). Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition[J]. Plasma Science and Technology, 2016, 18(4): 376-381. DOI: 10.1088/1009-0630/18/4/08
Citation: DONG Yunsong (董云松), YANG Jiamin (杨家敏), SONG Tianming (宋天明), ZHU Tuo (朱托), HUANG Chengwu (黄成武). Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition[J]. Plasma Science and Technology, 2016, 18(4): 376-381. DOI: 10.1088/1009-0630/18/4/08

Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition

  • As a fundamental and crucial research topic in the direct-driven inertial confinement fusion (ICF), especially for shock ignition (SI), investigation on the laser coupling with planar low-Z targets is beneficial for deep physical comprehension at the primary phase of SI. The production of the intense shock and the shock coalescence in the multi-layer targets, driven by the 3ω intense laser (351 nm the wavelength), were studied in detail with the 1D and 2D radiation hydrodynamic simulations. It was inferred that the 1D simulation would overrate the shock velocity and the ablation pressure of the spike; the coalescence time and the velocity of the coalescence shock depended evidently on the pulse shape and the start time of the spike. The present study can also provide a semi-quantitative reference for the design of the SI decomposition experiments on the Shenguang-III prototype laser facility.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return