Advanced Search+
WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
Citation: WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06

Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration

Funds: supported by National Natural Science Foundation of China (No. 11405022)
More Information
  • Received Date: September 08, 2015
  • In this paper, we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model. The results show that, the DBDs driven by positive pulse, negative pulse and bipolar pulse possess different behaviors. Moreover, the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes. For the case of the positive pulse, the breakdown field is much lower than that of the negative pulse, and its propagation characteristic is different from the negative pulse DBD. When the DBD is driven by a bipolar pulse voltage, there exists the interaction between the positive and negative pulses, resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors. In addition, the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied.
  • 1 Massines F, Gherardi N, Naud’e N, et al. 2009, Eur.Phys. J. Appl. Phys., 47: 22805 2 Brandenburg R, Maiorov V A, Golubovskii Yu B, et al.2005, J. Phys. D: Appl. Phys., 38: 2187 3 Wang Y H, Shi H, Sun J Z, et al. 2009, Phys. Plasmas,16: 063507 4 Shi J J, Liu D W, and Kong M G. 2007, IEEE Trans.Plasma Sci., 35: 137 5 Golubovskii Yu B, Maiorov V A, Behnke J, et al. 2003,J. Phys. D: Appl. Phys., 36: 39 6 Shao T, Yu Y, Zhang C, et al. 2010, Electr. Insul., 17:1830 7 Xiong Q, Lu X P, Ostrikov K, et al. 2010, Phys. Plasmas, 17: 043506 8 Walsh J L, Shi J J and Kong M G. 2006, Appl. Phys.Lett., 88: 171501 9 Lu X P and Laroussia M. 2006, J. Phys. D: Appl.Phys., 39: 1127 10 Pai D, Lacoste D, Laux C. 2010, J. Appl. Phys., 107:093303 11 Pai D, Stancu G, Lacoste D, et al. 2009, Plasma Sources Sci. Technol., 18: 045030 12 Yang D Z, Yang Y, Li S Z, et al. 2012, Plasma Sources Sci. Technol., 21: 035004 13 Yang D Z, Wang W C, Li S Z, et al. 2010, J. Phys. D:Appl. Phys., 43: 455202 14 Yang Y, Wang W C, Yang D Z, et al. 2012, J. Electrostics, 70: 356 15 Liu Z J, Wang W C, Zhang S, et al. 2012, Eur. Phys.J. D, 66: 319 16 Nudnova M M and Starikovskii A Y. 2008, IEEE Trans. Plasma Sci., 36: 896 17 Wang Y H and Wang D Z. 2006, Acta Physica Sinica, 55: 5923 18 Radu I, Bartnikas R and Wertheimer M R. 2003, J.Phys. D: Appl. Phys., 36: 1284 19 Kulikovsky A A. 1998, Phys. Rev. E, 57: 7066 20 Morrow R. 1985, Phys. Rev. A, 32: 1799 21 Potamianou S, Spyrou N and Loiseau J F. 2002, J.Phys. D: Appl. Phys., 35: 1373 22 Sang C F, Sun J Z, Ren C S, et al. 2009, J. Appl.Phys., 105: 043305 23 Li X W. 2013, J. Phys.: Conf. Ser., 418: 012012 24 Lama W L and Gallo C F. 1974, J. Appl. Phys., 45:103 25 Stewart R A and Lieberman M A. 1991, J. Appl. Phys.,70: 3481 26 Mankowski J, Dickens J, Kristiansen M. 1998, IEEE Trans. Plasma Sci., 26: 874 27 Shao T, Sun G S, Yan P, et al. 2006, High Power Laser and Particle Beams, 18: 1031 28 Tao F B, Zhang Q G, Wei X, et al. 2011, IEEE Trans.Plasma Sci., 39: 2252

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return