Advanced Search+
ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 490-493. DOI: 10.1088/1009-0630/18/5/08
Citation: ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 490-493. DOI: 10.1088/1009-0630/18/5/08

Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker

More Information
  • Received Date: September 07, 2015
  • The pressure distribution in an arcing chamber is critically important for the SF6 puffer circuit breaker design. In this paper, the pressure variation of four locations in the nozzle was measured by piezoresistive and fiber optical pressure sensors at two current levels of 10 kA and 50 kA. An arc voltage measurement was also taken. The results demonstrate that using either type of sensor with a connecting tube is able to detect the fast pressure variation in circuit breakers, however the possible distortion and delay to the pressure transient caused by the tube need further study.
  • 1 Knobloch H, Habedank U. 1999, Arc resistance at current zero: a tool to describe the breaking capacity of SF 6 circuit-breakers at shot-line faults. Eleventh International Symposium on High Voltage Engineering,23-27 Aug. 1999, London, P. 205 2 Knobloch H, Habedank U. 2001, IEE Proceedings-Sci.Meas. Technol., 148: 273 3 Blez B, Guilloux C. 1989, IEEE Power Engineering Review, 621: 64 4 Schavemaker P H, van ber Sluis L, Pharmatrisanti A.2002, IEE Proceedings-Sci. Meas. Technol., 149: 17 5 Noeske H O. 1977, IEEE Trans. PAS, PAS-96: 896 6 van ber Sluis L, Rutgers W R. 1994, IEEE Trans.Power Delivery, 10: 137 7 Isaac L T, Jones G R, Humphries J E, et al. 1999, IEE Proceedings-Sci. Meas. Technol., 146: 199 8 Wang W Z, Yan J D, Rong M Z, et al. 2013, IEEE Transactions on Plasma Science, 41: 915 9 Wu Y, Wang W Z, Rong M Z, et al. 2014, IEEE Transaction on Dielectrics and Electrical Insulation, 20: 129 10 Taylor S, Fang M T C, Jones G R, et al. 1991, IEE Proceedings A, 138: 259 11 Isaac L T, Spencer J W, Humphries J, et al. 1999, IEE Proceedings-Gener. Transm. Distrib., 146: 453 12 Pei Y Q, Zhong J Y, Zhang J M, et al. 2014, Journal and Physics D: Applied Physics, 47: 335201 13 Leclerc J L, Smith M R, Jones G R. 1980, IEEE Transitions on Plasma Science, PS-8: 376 14 Lin X, Di Q, Han S M. 2008, Proceedings of the CSEE,15: 130 (in Chinese)
  • Related Articles

    [1]Jiacheng LI (李嘉诚), Zhongzheng HUANG (黄钟政), Dawei LIU (刘大伟), Kuanlei ZHENG (郑宽磊). The enhanced aerosol deposition by bipolar corona discharge arrays[J]. Plasma Science and Technology, 2021, 23(6): 64010-064010. DOI: 10.1088/2058-6272/abf6ad
    [2]Adem ACIR, Esref BAYSAL. Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine[J]. Plasma Science and Technology, 2018, 20(7): 75601-075601. DOI: 10.1088/2058-6272/aab3c4
    [3]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [4]Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
    [5]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [6]CHANG Zhengshi (常正实), YAO Congwei (姚聪伟), ZHANG Guanjun (张冠军). Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet[J]. Plasma Science and Technology, 2016, 18(1): 17-22. DOI: 10.1088/1009-0630/18/1/04
    [7]WU Xingwei(吴兴伟), LI Cong(李聪), ZHANG Chenfei(张辰飞), DING Hongbin(丁洪斌). High-Sensitivity In-Situ Diagnosis of NO 2 Production and Removal in DBD Using Cavity Ring-Down Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 142-148. DOI: 10.1088/1009-0630/16/2/10
    [8]Kenji SAITO, Ryuhei KUMAZAWA, Tetsuo SEKI, Hiroshi KASAHARA, Goro NOMURA, et al. Measurement of Ion Cyclotron Emissions by Using High-Frequency Magnetic Probes in the LHD[J]. Plasma Science and Technology, 2013, 15(3): 209-212. DOI: 10.1088/1009-0630/15/3/03
    [9]WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729.
    [10]Sankarsan Mohapatro, B S Rajanikanth. Study of Pulsed Plasma in a Crossed Flow Dielectric Barrier Discharge Reactor for Improvement of NOx Removal in Raw Diesel Engine Exhaust[J]. Plasma Science and Technology, 2011, 13(1): 82-87.

Catalog

    Article views (245) PDF downloads (718) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return