Advanced Search+
QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13
Citation: QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13

Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

Funds: supported by National Natural Science Foundation of China (No. 51437002)
More Information
  • Received Date: September 08, 2015
  • Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap.
  • 1 Tendero C, Tixier C, Tristant P, et al. 2006, Spectrochimica Acta Part B: Atomic Spectroscopy, 61: 2 2 Kogelschatz U. 2003, Plasma Chem. Plasma Process.,23: 1 3 Shao T, Yan P, Long K, et al. 2008, IEEE Trans. Plasma Sci., 36: 1358 4 Ayan H, Fridman G, Gutsol A, et al. 2008, IEEE Trans.Plasma Sci., 36: 504 5 Fang Z, Lei X, Cai L L, et al. 2011, Plasma Sci. Technol.,13: 676 6 Li X C, Chang Y Y, Liu R F, et al. 2013, Acta Phys.Sin., 62: 165205 7 Sawada Y, Ogawa S and Kogoma M. 1995, J. Phys. D:Appl. Phys., 28: 1661 8 Gherardi N, Martin S and Massines F. 2000, J. Phys. D:Appl. Phys., 33: L104 9 Walsh J and Kong M. 2007, Appl. Phys. Lett., 91:251504 10 Shao T, Zhang C, Long K, et al. 2010, Appl. Surf. Sci.,256: 3888 11 Roth J R, Sherman D M, Gadri R B, et al. 2000, IEEE Trans. Plasma Sci., 28: 56 12 Lu X, Cao Y, Yang P, et al. 2009, IEEE Trans. Plasma Sci., 37: 668 13 Zhang J, Liu J, Zhang R, et al. 2015, Plasma Sci. Technol., 17: 50 14 Chen H, Xiu Z, Bai F. 2014, Plasma Sci. Technol., 16:602 15 Ono R and Oda T. 2007, J. Phy. D: Appl. Phys., 40:176 16 Xu D A, Shneider M N, Lacoste D A, et al. 2014, J.Phys. D: Appl. Phys., 47: 235202 17 Liu Z J, Wang W C, Zhang L, et al. 2014, J. Appl. Phys.,115: 203302 18 Mizuno A, Clements J S and Davis R H. 1986, IEEE Trans. Industry Appl., 22: 516 19 Williamson J M, Trump D D, Bletzinger P, et al. 2006,J. Phys. D: Appl. Phys., 39: 4400 20 Duten X, Packan D, Yu L, et al. 2002, IEEE Trans.Plasma Sci., 30: 178 21 Takaki K, Hosokawa M, Sasaki T, et al. 2005, Appl.Phys. Lett., 86: 151501 22 Korolev Yu D and Mesyats G A. 1998, Physics of Pulsed Breakdown in Gases. URO Press, Yekaterinburg, chapter 6 23 Ayan H, Staack D and Fridman G. 2009, J. Phys. D:Appl. Phys., 42: 125202 24 Shao T, Long K, Zhang C, et al. 2008, J. Phys. D: Appl.Phys., 41: 215203 25 Yang D Z, Wang W C, Li S Z, et al. 2010, J. Phys. D:Appl. Phys., 43: 455202 26 Yang D Z, Wang W C, Jia L, et al. 2011, J. Appl. Phys.,109: 073308 27 Pai D, Lacoste D A and Laux C O. 2008, IEEE Trans.Plasma Sci., 36: 974 28 Panousis E, Merbahi N. Cl′ ement F, et al. 2009, IEEE Trans. Plasma Sci., 37: 1004 29 Levinson S J, Kunhardt E E.1982, IEEE Trans.Plasma Sci., 10: 266 30 Luo S C, Denning M and Scharer J E. 2008, J. Appl.Phys., 104: 013301 31 Yu L, Pierrot L, Laux C, et al. 2001, Plasma Chem.Plasma Process., 21: 483
  • Related Articles

    [1]Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3
    [2]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [3]Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
    [4]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [5]Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1
    [6]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [7]WANG Ying (王莹), CHEN Anmin (陈安民), LI Suyu (李苏宇), SUI Laizhi (隋来志), LIU Dunli (刘敦利), LI Shuchang (李舒畅), LI He (李贺), JIANG Yuanfei (姜远飞), JIN Mingxing (金明星). Re-Heating Effect on the Enhancement of Plasma Emission Generated from Fe Under Femtosecond Double-Pulse Laser Irradiation[J]. Plasma Science and Technology, 2016, 18(12): 1192-1197. DOI: 10.1088/1009-0630/18/12/09
    [8]ZHU Dehua (朱德华), CAO Yu (曹宇), ZHONG Rong (钟蓉), CHEN Xiaojing (陈孝敬). Quantitative Analysis of Composition Change in AZ31 Magnesium Alloy Using CF-LIBS After Laser Material Processing[J]. Plasma Science and Technology, 2015, 17(11): 909-913. DOI: 10.1088/1009-0630/17/11/03
    [9]SUN Duixiong(孙对兄), SU Maogen(苏茂根), DONG Chenzhong(董晨钟), WEN Guanhong(温冠宏). A Comparative Study of the Laser Induced Breakdown Spectroscopy in Single- and Collinear Double-Pulse Laser Geometry[J]. Plasma Science and Technology, 2014, 16(4): 374-379. DOI: 10.1088/1009-0630/16/4/13
    [10]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02

Catalog

    Article views (294) PDF downloads (738) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return