Advanced Search+
SUN Min (孙敏), YANG Bo (杨波), PENG Tianxiang (彭天祥), LEI Mingkai (雷明凯). Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control[J]. Plasma Science and Technology, 2016, 18(6): 680-685. DOI: 10.1088/1009-0630/18/6/16
Citation: SUN Min (孙敏), YANG Bo (杨波), PENG Tianxiang (彭天祥), LEI Mingkai (雷明凯). Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control[J]. Plasma Science and Technology, 2016, 18(6): 680-685. DOI: 10.1088/1009-0630/18/6/16

Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control

Funds: supported by National Natural Science Foundation of China (No. 21276036), Liaoning Provincial Natural Science Foundation of China (No. 2015020123) and the Fundamental Research Funds for the Central Universities of China (No. 3132015154)
More Information
  • Received Date: May 04, 2015
  • Unsteady dielectric barrier discharge (DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil. The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0. It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5 as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles, indicating a better flow control performance. By comparing the lift coefficients and the threshold voltages, an optimum duty cycle is determined as 0.25 by which the maximum lift coef¬fficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle. The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle.
  • 1 Wu Y, Li Y H. 2015, Acta Aeronautica et Astronautica Sinica, 36: 381 (in Chinese) 2 Benard N, Mizuno A, Moreau E. 2009, Journal of Physics D: Applied Physics, 42: 5204 3 Popkin S H, Cybyk B Z, Land III H B, et al. 2013, Recent performance based advances in SparkJet actuator design for supersonic flow applications. AIAA, Reston, AIAA-2013-0322 4 Corke T C, Enloe C L, Wilkinson S P. 2010, Annual Review of Fluid Mechanics, 42: 505 5 Jin D, Li Y H, Jia M, et al. 2013, Plasma Science and Technology, 15: 1034 6 Han M H, Li J, Liang H, et al. 2015, Plasma Science and Technology, 17: 502 7 Benard N, Moreau E. 2012, EHD force and electric wind produced by surface dielectric barrier discharge plasma actuator used for airflow control. AIAA, Reston, AIAA-2012-3136 8 Sun M, Yang B, Zhang Z T, et al. 2013, Surface and Coatings Technology, 228: 179 9 Zhang P F, Wang J J, Shi W Y, et al. 2007, Journal of Experiments in Fluid Mechanics, 21: 35 (in Chinese) 10 Kelley C L, Bowles P and Cooney J, et al. 2012, High Mach number leading edge flow separation control using AC DBD plasma actuators. AIAA, Reston, AIAA-2012-0906 11 Font G I, Enloe C L, Newcomb J Y, et al. 2011, AIAA Journal, 49: 1366 12 Zhu Y F, Wu Y, Cui W, et al. 2013, Acta Aeronautica et Astronautica Sinica, 34: 2081 (in Chinese) 13 Song H M, Zhang Y G, Li Y H, et al. 2012, Plasma Science and Technology, 14: 327 14 Wang J J, Choi K S, Feng L H, et al. 2013, Progress in Aerospace Sciences, 62: 52 15 Wu Y, Li Y H, Liang H, et al. 2014, Nanosecond pulsed discharge plasma actuation: characteristics and perfor- mance, AIAA, Reston, AIAA-2014-2118 16 Kotsonis M, Ghaemi S. 2012, Journal of Physics D: Applied Physics, 45: 045204 17 Che X K, Shao T, Nie W S, et al. 2012, Journal of Physics D: Applied Physics, 45: 145201 18 Li Y H, Liang H, Ma Q Y, et al. 2008, Acta Aeronautic et Astronautica Sinica, 29: 1429 (in Chinese) 19 Zhang Z T. 2003, Study of the narrow discharge Gap DBD plasma source at atmospheric pressure and its basic application [Ph.D]. Northeastern University, Shenyang (in Chinese) 20 Bouef J P, Pitchford L C. 2005, Journal of Applied Physics, 97: 103307 21 Font G I, Morganand W L. 2005, Plasma discharges in atmospheric pressure oxygen for boundary layer separa- tion control, AIAA, Reston, AIAA-2005-4632 22 Font G I, Morganand W L. 2007, AIAA Journal, 47:103 23 Font G I. 2006, AIAA Journal, 44: 1572
  • Related Articles

    [1]Ziying REN, Liqiu WEI, Zexin LIU, Yanlin HU, Liang HAN, Hong LI, Yongjie DING, Xiufeng ZHONG. Thrust estimate method of an on-orbit Hall thruster using Hall drift current[J]. Plasma Science and Technology, 2024, 26(12): 125506. DOI: 10.1088/2058-6272/ad81cf
    [2]Dingchen LI, Chuan LI, Jiawei LI, Wendi YANG, Menghan XIAO, Ming ZHANG, Yong YANG, Kexun YU. Efficient direction-independent fog harvesting using a corona discharge device with a multi-electrode structure[J]. Plasma Science and Technology, 2022, 24(9): 095502. DOI: 10.1088/2058-6272/ac6be4
    [3]Zhongkai ZHANG (张仲恺), Guanrong HANG (杭观荣), Jiayun QI (齐佳运), Zun ZHANG (张尊), Zhe ZHANG (章喆), Jiubin LIU (刘久镔), Wenjiang YANG (杨文将), Haibin TANG (汤海滨). Design and fabrication of a full elastic sub-micron-Newton scale thrust measurement system for plasma micro thrusters[J]. Plasma Science and Technology, 2021, 23(10): 104004. DOI: 10.1088/2058-6272/ac1ac3
    [4]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [5]Tianwei LAI (赖天伟), Bao FU (付豹), Shuangtao CHEN (陈双涛), Qiyong ZHANG (张启勇), Yu HOU (侯予). Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem[J]. Plasma Science and Technology, 2017, 19(2): 25604-025604. DOI: 10.1088/2058-6272/19/2/025604
    [6]WANG Yuling (王玉玲), GAO Chao (高超), WU Bin (武斌), HU Xu (胡旭). Simulation of Flow Around Cylinder Actuated by DBD Plasma[J]. Plasma Science and Technology, 2016, 18(7): 768-774. DOI: 10.1088/1009-0630/18/7/12
    [7]ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09
    [8]YANG Fuxiang (杨富翔), MU Zongxin (牟宗信), ZHANG Jialiang (张家良). Discharge Modes Suggested by Emission Spectra of Nitrogen Dielectric Barrier Discharge with Wire-Cylinder Electrodes[J]. Plasma Science and Technology, 2016, 18(1): 79-85. DOI: 10.1088/1009-0630/18/1/14
    [9]LIU Yiying (刘懿莹), WU Yi (吴翊), RONG Mingzhe (荣命哲), HE Hailong (何海龙). Simulation of the Effect of a Metal Vapor Arc on Electrode Erosion in Liquid Metal Current Limiting Device[J]. Plasma Science and Technology, 2013, 15(10): 1006-1011. DOI: 10.1088/1009-0630/15/10/09
    [10]B. DEBALINA, M. KAMARAJ, S. R. CHAKRAVARTHI, N. J. VASA, R. SARATHI. Understanding the Mechanism of Nanoparticle Formation in a Wire Explosion Process by Adopting the Optical Emission Technique[J]. Plasma Science and Technology, 2013, 15(6): 562-569. DOI: 10.1088/1009-0630/15/6/14

Catalog

    Article views (315) PDF downloads (508) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return