Advanced Search+
FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02
Citation: FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02

The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak

Funds: supported by National Natural Science Foundation of China (No. 11275047), the National Magnetic Confinement Fusion Science Program of China (No. 2013GB102000)
More Information
  • Received Date: December 03, 2015
  • A tangential fast visible camera has been set up in EAST tokamak for the study of edge MHD instabilities such as ELM. To determine the 3-D information from CCD images, Tsai’s two-stage technique was utilized to calibrate the high-speed camera imaging system for ELM study. By applying tiles of the passive stabilizers in the tokamak device as the calibration pattern, transformation parameters for transforming from a 3-D world coordinate system to a 2-D image coordinate system were obtained, including the rotation matrix, the translation vector, the focal length and the lens distortion. The calibration errors were estimated and the results indicate the reliability of the method used for the camera imaging system. Through the calibration, some information about ELM filaments, such as positions and velocities were obtained from images of H-mode CCD videos.
  • Related Articles

    [1]Run WANG, Man WANG, Zhouling YANG, Mingyu WANG, Leyi LIU, Lu ZHOU, Yi ZHANG, Yingqi SONG. Ag enhanced CuS nanoflower catalyst coupling dielectric barrier discharge plasma for disinfection performance and mechanism[J]. Plasma Science and Technology, 2024, 26(12): 125501. DOI: 10.1088/2058-6272/ad79af
    [2]Zhan SHU (舒展), Chuanqi WANG (汪传奇), Insaf HOSSAIN, Qiang CHEN (陈强), Wanlian LI (李婉莲), Jinqi WANG (王晋琪), Pengfei LIU (刘鹏飞), Qing XIONG (熊青). Preliminary study of an open-air water-contacting discharge for direct nitrogen fixation[J]. Plasma Science and Technology, 2021, 23(3): 35501-035501. DOI: 10.1088/2058-6272/abe037
    [3]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [4]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [5]Hong ZHAO (赵红), Chengwu YI (依成武), Rongjie YI (依蓉婕), Huijuan WANG (王慧娟), Lanlan YIN (尹兰兰), I N MUHAMMAD, Zhongfei MA (马中飞). Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge[J]. Plasma Science and Technology, 2018, 20(3): 35503-035503. DOI: 10.1088/2058-6272/aa97d1
    [6]Imran Ali KHAN, G MURTAZA. Effect of kappa distribution on the damping rate of the obliquely propagating magnetosonic mode[J]. Plasma Science and Technology, 2018, 20(3): 35302-035302. DOI: 10.1088/2058-6272/aaa457
    [7]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [8]ZHAO Guoming(赵国明), SUN Qian(孙倩), ZHAO Shuxia(赵书霞), GAO Shuxia(高书侠), ZHANG Lianzhu(张连珠). The Effect of Gas Flow Rate on Radio-Frequency Hollow Cathode Discharge Characteristics[J]. Plasma Science and Technology, 2014, 16(7): 669-676. DOI: 10.1088/1009-0630/16/7/07
    [9]Setareh SALARIEH, Davoud DORRANIAN. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(11): 1122-1126. DOI: 10.1088/1009-0630/15/11/09
    [10]HU Miao(胡淼), GUO Yun(郭赟). The Effect of Air Plasma on Sterilization of Escherichia coli in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(8): 735-740. DOI: 10.1088/1009-0630/14/8/10

Catalog

    Article views (453) PDF downloads (838) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return