Advanced Search+
FU Qiang (付强), TANG Ying (唐影), ZHAO Jinsong (赵金松), LU Jianyong (吕建永). Low-Frequency Waves in Cold Three-Component Plasmas[J]. Plasma Science and Technology, 2016, 18(9): 897-901. DOI: 10.1088/1009-0630/18/9/04
Citation: FU Qiang (付强), TANG Ying (唐影), ZHAO Jinsong (赵金松), LU Jianyong (吕建永). Low-Frequency Waves in Cold Three-Component Plasmas[J]. Plasma Science and Technology, 2016, 18(9): 897-901. DOI: 10.1088/1009-0630/18/9/04

Low-Frequency Waves in Cold Three-Component Plasmas

Funds: supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS
More Information
  • Received Date: December 27, 2015
  • The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles.
  • Related Articles

    [1]Haiyan MA (马海燕), Donghui XIA (夏冬辉), Zhijiang WANG (王之江), Fangtai CUI (崔芳泰), Zhenxiong YU (余振雄), Yikun JIN (金易坤), Changhai LIU (刘昌海). Design of the high voltage isolation transmission module with low delay for ECRH system on J-TEXT[J]. Plasma Science and Technology, 2018, 20(2): 24004-024004. DOI: 10.1088/2058-6272/aa99d3
    [2]WANG Lei(王磊), HUANG Yiyun(黄懿赟), ZHAO Yanping(赵燕平), ZHANG Jian(张健), YANG Lei(杨磊), GUO Wenjun(郭文军). Structure Design and Analysis of High-Voltage Power Supply for ECRH[J]. Plasma Science and Technology, 2014, 16(11): 1079-1082. DOI: 10.1088/1009-0630/16/11/15
    [3]ZENG Wubing(曾武兵), DING Yonghua(丁永华), YI Bin(易斌), XU Hangyu(许航宇), RAO Bo(饶波), ZHANG Ming(张明), LIU Minghai(刘明海). New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT[J]. Plasma Science and Technology, 2014, 16(11): 1074-1078. DOI: 10.1088/1009-0630/16/11/14
    [4]HUANG Haihong(黄海宏), YIN Ming(殷明), WANG Haixin(王海欣). Design of Controller for New EAST Fast Control Power Supply[J]. Plasma Science and Technology, 2014, 16(11): 1068-1073. DOI: 10.1088/1009-0630/16/11/13
    [5]QIN Long(秦龙), ZHAO Qing(赵青), LIU Shuzhang(刘述章). Design of Millimeter-Wave High-Power Power Monitoring Miter Bend Based on Aperture-Coupling[J]. Plasma Science and Technology, 2014, 16(7): 712-715. DOI: 10.1088/1009-0630/16/7/14
    [6]HUANG Haihong(黄海宏), YAN Teng(晏腾), WANG Haixin(王海欣). Application of a Current and Voltage Mixed Control Mode for the New Fast Control Power Supply at EAST[J]. Plasma Science and Technology, 2014, 16(4): 420-423. DOI: 10.1088/1009-0630/16/4/22
    [7]LIU Hui (刘辉), TANG Ke (唐柯), GAO Ge (高格), FU Peng (傅鹏), et al.. Study of the EAST Fast Control Power Supply Based on Carrier Phase-Shift PWM[J]. Plasma Science and Technology, 2013, 15(9): 950-954. DOI: 10.1088/1009-0630/15/9/22
    [8]M. MATSUKAWA, K. SHIMADA, K. YAMAUCHI, E. GAIO, A. FERRO, L. NOVELLO. A Conceptual Design Study for the Error Field Correction Coil Power Supply in JT-60SA[J]. Plasma Science and Technology, 2013, 15(3): 257-260. DOI: 10.1088/1009-0630/15/3/13
    [9]CHEN Wenguang (陈文光), RAO Jun (饶军), LI Bo (李波), LEI Guangjiu (雷光玖), CAO Jianyong (曹建勇), WANG Mingwei (王明伟), KANG Zihua (康自华), FENG Kun (冯鲲), HL-A NBI Group. Technical Design of Arc-Discharge and Deceleration Power Supply for MW Level NBI System on HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(10): 936-940. DOI: 10.1088/1009-0630/14/10/15
    [10]XU Weidong (徐伟东), XUAN Weimin (宣伟民), YAO Lieying (姚列英), WANG Yingqiao (王英翘). Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A[J]. Plasma Science and Technology, 2012, 14(3): 263-268. DOI: 10.1088/1009-0630/14/3/14

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return