Advanced Search+
M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002
Citation: M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002

Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity

More Information
  • Received Date: May 17, 2016
  • A comparative study is carried out for the nonlinear propagation of ion acoustic shock waves both for the weakly and highly relativistic plasmas consisting of relativistic ions and q-distributed electrons and positions. The Burgers equation is derived to reveal the physical phenomena using the well known reductive perturbation technique. The integration of the Burgers equation is performed by the (G‘/G ) -expansion method. The effects of positron concentration, ion–electron temperature ratio, electron–positron temperature ratio, ion viscosity coefficient, relativistic streaming factor and the strength of the electron and positron nonextensivity on the nonlinear propagation of ion acoustic shock and periodic waves are presented graphically and the relevant physical explanations are provided.
  • [1]
    Shukla P K et al 1986 Phys. Rep. 138 1
    [2]
    Ress M J 1983 The Very Early Universe ed G W Gibbons et al (Cambridge: Cambridge University Press)
    [3]
    Michel F C 1991 Theory of Neutron Star Magnetosphere (Chicago: Chicago University Press)
    [4]
    Michel F C 1982 Rev. Mod. Phys. 54 1
    [5]
    Miller H R and Wiita P J 1987 Active Galactic Nuclei (Berlin: Springer)
    [6]
    Burns M L 1983 Positron–Electron Pairs in Astrophysics (Melville NY: American Institute of Physics)
    [7]
    Tandberg-Hansen E and Emslie A G 1988 The Physics of Solar Flares (Cambridge: Cambridge University Press) p 124
    [8]
    Poornakala S et al 2002 Phys. Plasmas 9 3802
    [9]
    Mohanty J N and Baral K C 1996 Phys. Plasmas 3 804
    [10]
    Nejoh Y 1992 Phys. Fluid B 4 2830
    [11]
    Gill T S et al 2007 Phys. Lett. A 361 364
    [12]
    Gill T S, Bains A S and Saini N S 2009 Can. J. Phys. 87 861
    [13]
    Hafez M G and Talukder M R 2015 Astrophys. Space Sci. 359 27
    [14]
    Malik H K 1996 Phys. Rev. E 54 5844
    [15]
    Hafez M G, Talukder M R and Sakthivel R 2016 Indian J. Phys. 90 603
    [16]
    Hafez M G, Talukder M R and Ali M H 2016 Phys. Plasmas 23 012902
    [17]
    Steffen F D and Thoma M H 2001 Phys. Lett. B 510 98
    [18]
    Mamun A A and Shukla P K 2010 Phys. Lett. A 374 472
    [19]
    Shen B and Meyer-ter-Vehn J 2001 Phys. Rev. E 65 016405
    [20]
    Arons J 1979 Space Sci. Rev. 24 417
    [21]
    Grabbe C 1989 J. Geophys. Res. 94 17299
    [22]
    Wang X et al 2008 Phys. Rev. Lett. 101 124801
    [23]
    Ikezi H 1973 Phys. Fluids 16 1668
    [24]
    Spitkovsky A 2008 The Astrophys. J. 673 L39
    [25]
    Muggli P 2013 http://arxiv.org/pdf/1306.4380v1
    [26]
    Sarri G et al 2015 Nat. Commun. 6 6747
    [27]
    Corde S et al 2015 Nature 524 442
    [28]
    Hafez M G, Talukder M R and Ali M H 2016 Astrophys. Space Sci. 361 154
    [29]
    Hussain S and Mahmood S 2011 Phys. Plasmas 18 052308
    [30]
    Hussain S, Mahmood S and Ur-Rehman H 2013 Phys. Plasmas 20 062102
    [31]
    Pakzad H R and Tribeche M 2013 J. Fusion Energy 32 171
    [32]
    Pakzad H R and Javidan K 2011 Astrophys. Space Sci. 333 257
    [33]
    Javidan K and Saadatmand D 2011 Astrophys. Space Sci. 333 471
    [34]
    Javidan K and Pakzad H R 2012 Indian J. Phys. 86 1037
    [35]
    Renyi A 1955 Acta Math. Hung. 6 285
    [36]
    Tsallis C 1988 J. Stat. Phys. 52 479
    [37]
    El-Tantawy S A, Tribeche M and Moslem W M 2012 Phys. Plasmas 19 032104
    [38]
    WangML,LiXZandZhang J2008 Phys. Lett. A 372 417
    [39]
    Ferdousi M, Sultana S and Mamun A A 2015 Phys. Plasmas 22 032117
    [40]
    Ferdousi M, Yasmin S, Ashraf S and Mamun A A 2014 Astrophys. Space Sci. 352 579
    [41]
    Jannat N, Ferdousi M and Mamun A A 2015 J. Korean Phys. Soc. 67 496
    [42]
    Ferdousi M, Yasmin S, Ashraf S and Mamun A A 2015 Chin. Phys. Lett. 32 015210
    [43]
    Jannat N, Ferdousi M and Mamun A A 2015 Commun. Theor. Phys. 64 479
    [44]
    Ema S A, Hossen M R and Mamun A A 2015 Phys. Plasmas 22 092108
    [45]
    Ferdousi M et al 2015 IEEE Trans. Plasma Sci. 43 643
    [46]
    Luo Q Z, D’Angelo N and Merlino R L 1998 Phys. Plasmas 5 2868
    [47]
    Takeuchi T, Izuka S and Sato N 1998 Phys. Rev. Lett. 80 77
    [48]
    Nakamura Y 2002 Phys. Plasmas 9 440
  • Related Articles

    [1]Mengmeng XU, Qiaofeng ZHANG, Jinlin XIE. Design of Thomson scattering diagnostic system on linear magnetized plasma device[J]. Plasma Science and Technology, 2022, 24(6): 064008. DOI: 10.1088/2058-6272/ac6d43
    [2]Xue LI (李雪), Renwu ZHOU (周仁武), Bo ZHANG (张波), Rusen ZHOU (周儒森), Ken OSTRIKOV, Zhi FANG (方志). Design and characteristics investigation of a miniature low-temperature plasma spark discharge device[J]. Plasma Science and Technology, 2019, 21(5): 54005-054005. DOI: 10.1088/2058-6272/aaf111
    [3]Dawei GUO (郭大伟), Mousen CHENG (程谋森), Xiaokang LI (李小康), Bixuan CHE (车碧轩), Xiong YANG (杨雄), Moge WANG (王墨戈). Measurement of transient neutral gas puff pressure in the NUDT_IPPTx by a fast ionization gauge[J]. Plasma Science and Technology, 2018, 20(12): 125506. DOI: 10.1088/2058-6272/aade84
    [4]Mooktzeng LIM (林木森), Ahmad Zulazlan Shah ZULKIFLI. Investigation of biomass surface modification using non-thermal plasma treatment[J]. Plasma Science and Technology, 2018, 20(11): 115502. DOI: 10.1088/2058-6272/aac819
    [5]Lin WANG (王林), Junkang YAO (姚军康), Zheng WANG (王政), Hongqiao JIAO (焦洪桥), Jing QI (齐静), Xiaojing YONG (雍晓静), Dianhua LIU (刘殿华). Fast and low-temperature elimination of organic templates from SBA-15 using dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2018, 20(10): 101001. DOI: 10.1088/2058-6272/aad547
    [6]Xingmin SHI (石兴民), Jinren LIU (刘进仁), Guimin XU (许桂敏), Yueming WU (吴月明), Lingge GAO (高菱鸽), Xiaoyan LI (李晓艳), Yang YANG (杨阳), Guanjun ZHANG (张冠军). Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach[J]. Plasma Science and Technology, 2018, 20(4): 44004-044004. DOI: 10.1088/2058-6272/aa9b78
    [7]ZHENG Dianfeng (郑殿峰). The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation[J]. Plasma Science and Technology, 2016, 18(11): 1110-1115. DOI: 10.1088/1009-0630/18/11/09
    [8]Pascal ANDRE, William BUSSIERE, Alain COULBOIS, Jean-Louis GELET, David ROCHETTE. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature[J]. Plasma Science and Technology, 2016, 18(8): 812-820. DOI: 10.1088/1009-0630/18/8/04
    [9]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [10]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19

Catalog

    Article views (343) PDF downloads (646) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return