Advanced Search+
Manping LI (李曼苹), Kai WU (吴锴), Zhao ZHANG (张钊), Yonghong CHENG (成永红). Effect of toughened epoxy resin on partial discharge at solid–solid interface[J]. Plasma Science and Technology, 2017, 19(2): 25401-025401. DOI: 10.1088/2058-6272/19/2/025401
Citation: Manping LI (李曼苹), Kai WU (吴锴), Zhao ZHANG (张钊), Yonghong CHENG (成永红). Effect of toughened epoxy resin on partial discharge at solid–solid interface[J]. Plasma Science and Technology, 2017, 19(2): 25401-025401. DOI: 10.1088/2058-6272/19/2/025401

Effect of toughened epoxy resin on partial discharge at solid–solid interface

Funds: Supported by China Academy of Engineering Physics (Project 2014B05005).
More Information
  • Received Date: March 05, 2016
  • A series of solid–solid interfaces, consisting of ceramic–epoxy resin interface samples with a tip–plate electrode, were investigated by performing partial discharge tests and realtime electrical tree observations. A toughening agent was added to the epoxy resin at different ratios for comparison. The impact strength, differential scanning calorimetry (DSC) and dielectric properties of the cured compositions and ceramic were tested. The electric field strength at the tip was calculated based on Maxwell’s theory. The test results show that the addition of a toughener can improve the impact strength of epoxy resin but it decreases the partial discharge inception voltage (PDIV) of the interface sample. At the same time, toughening leads to complex branches of the electrical tree. The simulation result suggests that this reduction of the PDIV cannot be explained by a change of permittivity due to the addition of a toughening agent. The microstructural change caused by toughening was considered to be the key factor for lower PDIV and complex electrical tree branches.
  • [1]
    Hasheminezhad M and Ildstad E 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1
    [2]
    Takahashi T et al 2005 IEEE Trans. Dielectr. Electr. Insul. 12 719
    [3]
    Liu Q et al 1998 Proc. 1998 Int. Symp. on Electrical Insulating Marterials, in Conjunction with 1998 Asian Int. Conf. on Dielectrics and Electrical Insulation and 30th Symp. on Electrical Insulating Materials (Toyohashi, Japan) pp 635–8
    [4]
    Suzuoki Y et al 2001 High temperature PD degradation characteristics IEEE 7th Int. Conf. on Solid Dielectrics (Eindhoven, Netherlands) p 264
    [5]
    Ivanova K I, Pethrick R A and Affrossman S 2000 Polymer 41 6787
    [6]
    Suh K S et al 2000 IEEE Trans. Dielectr. Electr. Insul. 7 216
    [7]
    Yang X, Huang W and Yu Y 2012 J. Appl. Polym. Sci. 123 1913
    [8]
    Xie X et al 2011 Polym. Adv. Technol. 22 1731
    [9]
    Li M P et al 2014 Plasma Sci. Technol. 16 856
    [10]
    Wu K et al 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1651
    [11]
    Chen X R et al 2011 IEEE Trans. Dielectr. Electr. Insul. 18 847
    [12]
    Weeks T S, Adolf D and McCoy J D 1999 Marcromolecules 32 1918
    [13]
    Wiesmann H J and Zeller H R 1986 J. Appl. Phys. 60 1770
  • Related Articles

    [1]Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e
    [2]Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602
    [3]Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a
    [4]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [5]DING Baogang (丁宝钢), CHEN Chao (陈超), WANG Wendi (王闻迪), WU Tongyu (吴彤宇), ZHOU Yan (周艳), YIN Zejie (阴泽杰). Research on the Real-Time Phase Jump Process Method for Plasma Electron Density Measurement in HL-2A Tokamak[J]. Plasma Science and Technology, 2015, 17(10): 837-841. DOI: 10.1088/1009-0630/17/10/05
    [6]Takashi MINAMI, Shohei ARAI, Naoki KENMOCH, Hiroaki YASHIRO, Chihiro TAKAHASHI, Shinji KOBAYASHI, Tohru MIZUUCHI, Shinsuke OHSHIMA, Satoshi YAMAMOTO, Hiroyuki OKADA, Kazunobu NAGASAKI, et al. Present Status of the Nd:YAG Thomson Scattering System Development for Time Evolution Measurement of Plasma Profile on Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 240-243. DOI: 10.1088/1009-0630/15/3/10
    [7]FENG Qichun(冯启春), WANG Qingshang(王清尚), LIU Jianli(刘剑利), REN Yanyu(任延宇), ZHANG Jingbo(张景波), HUO Lei(霍雷). The Evolution of Elliptic Flow under First Order Phase Transition[J]. Plasma Science and Technology, 2012, 14(7): 573-576. DOI: 10.1088/1009-0630/14/7/01
    [8]HU Zuquan, CHEN Yinhua, ZHENG Jugao, LIU Hao, YU Mingyang, WU Jian. Evolution of small scale density perturbations of plasma and charged aerosol particles in Polar Mesospheric Summer Echoes (PMSE) layers[J]. Plasma Science and Technology, 2011, 13(5): 550-556.
    [9]YE Wenting(叶文婷), WU Di(吴迪), PAN Xin(潘欣), CHEN Yashao(陈亚芍), HAN Yong(憨勇), SONG Zhongxiao(宋忠孝). Preparation of Chitosan Coatings Containing Calcium and Phosphorus on Titanium Surface by the Cathode Liquid Phase Plasma Technology[J]. Plasma Science and Technology, 2010, 12(5): 614-618.
    [10]WANG Qiuying (王秋颖), LI Sen(李森), GU Fan(顾璠). Mechanism of Phase Transition from Liquid to Gas under Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2010, 12(5): 585-591.

Catalog

    Article views (315) PDF downloads (800) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return