Advanced Search+
K OGAWA, T NISHITANI, M ISOBE, M SATO, M YOKOTA, H HAYASHI, T KOBUCHI, T NISHIMURA. Effects of gamma-ray irradiation on electronic and non-electronic equipment of Large Helical Device[J]. Plasma Science and Technology, 2017, 19(2): 25601-025601. DOI: 10.1088/2058-6272/19/2/025601
Citation: K OGAWA, T NISHITANI, M ISOBE, M SATO, M YOKOTA, H HAYASHI, T KOBUCHI, T NISHIMURA. Effects of gamma-ray irradiation on electronic and non-electronic equipment of Large Helical Device[J]. Plasma Science and Technology, 2017, 19(2): 25601-025601. DOI: 10.1088/2058-6272/19/2/025601

Effects of gamma-ray irradiation on electronic and non-electronic equipment of Large Helical Device

Funds: This work is supported partly by the LHD project budget (NIFS15ULHH003 and NIFS15ULGG801).
More Information
  • Received Date: April 05, 2016
  • In a deuterium operation on the Large Helical Device, the measurement and control equipment placed in the torus hall must survive under an environment of radiation. To study the effects of gamma-ray irradiation on the equipment, an irradiation experiment is performed at the Cobalt-60 irradiation facility of Nagoya University. Transient and permanent effects on a personal computer, media converters, programmable logic controllers, isolation ampliers, a web camera, optical flow meters, and water sealing gaskets are experimentally surveyed. Transient noise appears on the web camera. Offset of the signal increases with an increase of the integrated dose on the programmable logic controller. The DeviceNet module on the programmable logic controller is broken at the integrated dose of 72 Gy, which is the expected range of the integrated dose of the torus hall. The other equipment can survive under the gamma-ray field in the torus hall.
  • [1]
    Nishitani T et al 1998 Fus. Eng. Des. 42 443
    [2]
    Yamamoto S et al 2000 J. Nucl. Mater. 283-287 60–9
    [3]
    Osakabe M et al 2015 Current status of the LHD project and its prospect for deuterium experiment 25th Int. Toki Conf. (Toki-city, Japan, 3–6 November)
    [4]
    Nishitani T et al 2016 Plasma Fus. Res. 11 2405057
    [5]
    Nagoya University Cobalt 60 irradiation facility (http://co60. nucl.nagoya-u.ac.jp)
    [6]
    Hanks C L and Hamman D J 1971 ‘Radiation Effects Design Handbook. Section 3, Electrical insulating Materials and Capacitors’, NASA CR-1787-1971 (https://ntrs.nasa.gov/ archive/nasa/casi.ntrs.nasa.gov/19710020300.pdf)
  • Related Articles

    [1]Ping XU, Yi YU, Haiyang ZHOU. Fabrication of a single-crystal diamond neutron detector and its application in 14.1 MeV neutron detection in deuterium–tritium fusion experiments[J]. Plasma Science and Technology, 2023, 25(7): 075101. DOI: 10.1088/2058-6272/acb48a
    [2]H L SWAMI, Deepak SHARMA, C DANANI, P CHAUDHARI, R SRINIVASAN, Rajesh KUMAR. Neutronic analysis of Indian helium-cooled solid breeder tritium breeding module for testing in ITER[J]. Plasma Science and Technology, 2022, 24(6): 065601. DOI: 10.1088/2058-6272/ac5b3f
    [3]Weisheng LIN, Xiaogang WANG, Xueqiao XU, Defeng KONG, Yumin WANG, Jiale CHEN, Zhanhui WANG, Chijie XIAO. Estimation of China Fusion Engineering Test Reactor performance and burning fraction in different pellet fueling scenarios by a multi-species radial transport model[J]. Plasma Science and Technology, 2022, 24(5): 055103. DOI: 10.1088/2058-6272/ac47f6
    [4]Debing ZHANG, Limin YU, Erbing XUE, Xianmei ZHANG, Haijun REN. Anomalous transport driven by ion temperature gradient instability in an anisotropic deuterium-tritium plasma[J]. Plasma Science and Technology, 2022, 24(2): 025104. DOI: 10.1088/2058-6272/ac42bc
    [5]R MILLS, J LOTOSKI, Y LU. Mechanism of soft x-ray continuum radiation from low-energy pinch discharges of hydrogen and ultra-low field ignition of solid fuels[J]. Plasma Science and Technology, 2017, 19(9): 95001-095001. DOI: 10.1088/2058-6272/aa7383
    [6]Xiuquan CAO (曹修全), Deping YU (余德平), Yong XIANG (向勇), Chao LI (李超), Hui JIANG (江汇), Jin YAO (姚进). Study on the ignition process of a segmented plasma torch[J]. Plasma Science and Technology, 2017, 19(7): 75404-075404. DOI: 10.1088/2058-6272/aa62f9
    [7]GAO Fangfang (高芳芳), ZHANG Xiaokang (张小康), PU Yong (蒲勇), ZHU Qingjun (祝庆军), LIU Songlin (刘松林). Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(8): 865-869. DOI: 10.1088/1009-0630/18/8/13
    [8]Heinrich HORA, George H. MILEY, HE Xiantu, ZHENG Wudi, Paraskevas LALOUSIS, Istvan F?OLDES, Sandor SZATMARI, Stavros MOUSTAIZIS, Reynaldo CASTILLO. Ultrahigh Acceleration of Plasma Blocks by Nonlinear Forces for Side-On Laser Ignition of Solid Density Fusion Fuel[J]. Plasma Science and Technology, 2013, 15(5): 420-424. DOI: 10.1088/1009-0630/15/5/05
    [9]M. MAHDAVI, A. GHOLAMI. Ignition Conditions for Simulated Fuel Pellets in Degenerate Plasma[J]. Plasma Science and Technology, 2013, 15(4): 323-328. DOI: 10.1088/1009-0630/15/4/04
    [10]WU Yongle (吴永乐), LIANG Juncheng (梁珺成), LIU Jiacheng (柳加成), XIONG Wenjun (熊文俊), YAO Shunhe (姚顺和), GUO Xiaoqing (郭晓清), CHEN Xilin (陈细林), YANG Yuandi (杨元第), YUAN Daqing(袁大庆). Standardization of tritium water by TDCR method[J]. Plasma Science and Technology, 2012, 14(7): 644-646. DOI: 10.1088/1009-0630/14/7/17

Catalog

    Article views (282) PDF downloads (900) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return