Advanced Search+
A F POPOVICH, V G RALCHENKO, V K BALLA, A K MALLIK, A A KHOMICH, A P BOLSHAKOV, D N SOVYK, E E ASHKINAZI, V Yu YUROV. Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2017, 19(3): 35503-035503. DOI: 10.1088/2058-6272/19/3/035503
Citation: A F POPOVICH, V G RALCHENKO, V K BALLA, A K MALLIK, A A KHOMICH, A P BOLSHAKOV, D N SOVYK, E E ASHKINAZI, V Yu YUROV. Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2017, 19(3): 35503-035503. DOI: 10.1088/2058-6272/19/3/035503

Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition

Funds: This work was supported by the Russian Ministry of Education and Science (RMES), Agreement No. 14.613.21.0021, unique ID No. RFMEFI61314X0021 and the Department of Science & Technology (DST), India, grant No. GAP0246 under the joint RMES–DST Research Collaboration Agreement ‘Development of large size polycrystalline CVD diamond material for optical windows and support rods in high power microwave tubes’.
More Information
  • Received Date: June 08, 2016
  • Polycrystalline diamond (PCD)films 100 mm in diameter are grown by 915 MHz microwave plasma chemical vapor deposition (MPCVD) at different process parameters, and their thermal conductivity (TC)is evaluated by a laser flash technique (LFT)in the temperature range of 230–380 K. The phase purity and quality of the films are assessed by micro-Raman spectroscopy based on the diamond Raman peak width and the amorphous carbon (a-C)presence in the spectra. Decreasing and increasing dependencies for TC with temperature are found for high and low quality samples, respectively. TC, as high as 1950±230 W m−1K−1 at room temperature, is measured for the most perfect material. A linear correlation between the TC at room temperature and the fraction of the diamond component in the Raman spectrum for the films is established.
  • [1]
    Pomeroy J W et al 2014 Appl. Phys. Lett. 104 083513
    [2]
    Ueda K et al 2006 Diam. Relat. Mater. 15 1954
    [3]
    Conte G et al 2012 Nanotechnology 23 025201
    [4]
    Oh A 2015 J. Instrument. 10 C04038
    [5]
    Girolami M et al 2012 IEEE Electron Device Lett. 33 224
    [6]
    Thumm M 2001 Diam. Relat. Mater. 10 1692
    [7]
    Anoikin E et al 2015 Components and packaging for laser systems SPIE Proc. 9346 93460T
    [8]
    Rogalin V E et al 2012 Russ. Microelectron. 41 464
    [9]
    Peng Y H et al 2013 Opt. Lett. 38 1709
    [10]
    Dayton J A et al 2005 IEEE Trans. Electron Dev. 52 695
    [11]
    Coe S E and Sussmann R S 2000 Diam. Relat. Mater. 9 1726
    [12]
    Twitchen D et al 2001 Diam. Relat. Mater. 10 731
    [13]
    Woerner E et al 2003 Diam. Relat. Mater. 12 744
    [14]
    Graebner J E et al 1994 Phys. Rev. B 50 3702
    [15]
    Inyushkin A V et al 2008 Phys. Stat. Sol. (a) 205 2226
    [16]
    Sukhadolau A V et al 2005 Diam. Relat. Mater. 14 589
    [17]
    Bolshakov A P et al 2016 Diam. Relat. Mater. 62 49
    [18]
    Graebner J E et al 1996 Diam. Relat. Mater. 5 693
    [19]
    Anaya J et al 2016 Acta Mater. 103 141
    [20]
    Ando Y et al 2002 Diam. Relat. Mater. 11 596
    [21]
    Mallik A K et al 2014 J. Adv. Ceram. 3 56
    [22]
    King D et al 2008 Diam. Relat. Mater. 17 520
    [23]
    Füner M, Wild C and Koidl P 1999 Surf. Coat. Technol.116 853
    [24]
    Grotjohn T et al 2005 Diam. Relat. Mater. 14 288
    [25]
    Tsai H Y, Kuo K L and Chin J 2007 Soc. Mech. Eng. 28 157
    [26]
    Liang Q et al 2014 Cryst. Growth & Design 14 3234
    [27]
    Goyal V et al 2012 Adv. Funct. Mater. 22 1525
    [28]
    Mallik A K et al 2014 Process. Appl. Ceram. 8 69
    [29]
    Smolin A A et al 1993 Appl. Phys. Lett. 62 3449
    [30]
    Williams O A et al 2007 Chem. Phys. Lett. 445 255
    [31]
    Ekimov E A et al 2008 Diam. Relat. Mater. 17 838
    [32]
    Nepsha V I 1998 Handbook of Industrial Diamonds and Diamond Films ed M A Prelas et al (New York: Dekker)
    [33]
    Tamor M A and Everson M P 1994 J. Mater. Res. 9 1839
    [34]
    Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
    [35]
    Khomich A V et al 2013 J. Appl. Spectrosc. 80 707
    [36]
    Liu W L et al 2006 Appl. Phys. Lett. 89 171915
    [37]
    Bachmann P K et al 1995 Diam. Relat. Mater. 4 820
    [38]
    Ho C Y, Powell R W and Liley P E 1972 J. Phys. Chem. Ref. Data 1 279
    [39]
    Wada N and Solin S A 1981 Physica B 105 353
  • Related Articles

    [1]Weijie HUO, Weiguo HE, Luofeng HAN, Kangwu ZHU, Feng WANG. A study of pulsed high voltage driven hollow-cathode electron beam sources through synchronous optical trigger[J]. Plasma Science and Technology, 2024, 26(5): 055501. DOI: 10.1088/2058-6272/ad113e
    [2]Chunxia LIANG (梁春霞), Ning WANG (王宁), Zhengchao DUAN (段正超), Feng HE (何锋), Jiting OUYANG (欧阳吉庭). Experimental investigations of enhanced glow based on a pulsed hollow-cathode discharge[J]. Plasma Science and Technology, 2019, 21(2): 25401-025401. DOI: 10.1088/2058-6272/aaef49
    [3]He GUO (郭贺), Xiaomei YAO (姚晓妹), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦). Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere[J]. Plasma Science and Technology, 2018, 20(10): 105404. DOI: 10.1088/2058-6272/aace9e
    [4]Shoujie HE (何寿杰), Peng WANG (王鹏), Jing HA (哈静), Baoming ZHANG (张宝铭), Zhao ZHANG (张钊), Qing LI (李庆). Effects of discharge parameters on the micro-hollow cathode sustained glow discharge[J]. Plasma Science and Technology, 2018, 20(5): 54006-054006. DOI: 10.1088/2058-6272/aab54b
    [5]Mingming SUN (孙明明), Tianping ZHANG (张天平), Xiaodong WEN (温晓东), Weilong GUO (郭伟龙), Jiayao SONG (宋嘉尧). Plasma characteristics in the discharge region of a 20A emission current hollow cathode[J]. Plasma Science and Technology, 2018, 20(2): 25503-025503. DOI: 10.1088/2058-6272/aa8edb
    [6]CHEN Yuqian (陈俞钱), HU Chundong (胡纯栋), XIE Yahong (谢亚红). Analysis of Effects of the Arc Voltage on Arc Discharges in a Cathode Ion Source of Neutral Beam Injector[J]. Plasma Science and Technology, 2016, 18(4): 453-456. DOI: 10.1088/1009-0630/18/4/21
    [7]S. CORNISH, J. KHACHAN. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun[J]. Plasma Science and Technology, 2016, 18(2): 138-142. DOI: 10.1088/1009-0630/18/2/07
    [8]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [9]LI Shichao(李世超), HE Feng(何锋), GUO Qi(郭琦), OUYANG Jiting(欧阳吉庭). Deposition of Diamond-Like Carbon on Inner Surface by Hollow Cathode Discharge[J]. Plasma Science and Technology, 2014, 16(1): 63-67. DOI: 10.1088/1009-0630/16/1/14
    [10]D. FUKUHARA, S. NAMBA, K. KOZUE, T. YAMASAKI, K. TAKIYAMA. Characterization of a Microhollow Cathode Discharge Plasma in Helium or Air with Water Vapor[J]. Plasma Science and Technology, 2013, 15(2): 129-132. DOI: 10.1088/1009-0630/15/2/10

Catalog

    Article views (289) PDF downloads (887) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return