Advanced Search+
A F POPOVICH, V G RALCHENKO, V K BALLA, A K MALLIK, A A KHOMICH, A P BOLSHAKOV, D N SOVYK, E E ASHKINAZI, V Yu YUROV. Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2017, 19(3): 35503-035503. DOI: 10.1088/2058-6272/19/3/035503
Citation: A F POPOVICH, V G RALCHENKO, V K BALLA, A K MALLIK, A A KHOMICH, A P BOLSHAKOV, D N SOVYK, E E ASHKINAZI, V Yu YUROV. Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2017, 19(3): 35503-035503. DOI: 10.1088/2058-6272/19/3/035503

Growth of 4″ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition

Funds: This work was supported by the Russian Ministry of Education and Science (RMES), Agreement No. 14.613.21.0021, unique ID No. RFMEFI61314X0021 and the Department of Science & Technology (DST), India, grant No. GAP0246 under the joint RMES–DST Research Collaboration Agreement ‘Development of large size polycrystalline CVD diamond material for optical windows and support rods in high power microwave tubes’.
More Information
  • Received Date: June 08, 2016
  • Polycrystalline diamond (PCD)films 100 mm in diameter are grown by 915 MHz microwave plasma chemical vapor deposition (MPCVD) at different process parameters, and their thermal conductivity (TC)is evaluated by a laser flash technique (LFT)in the temperature range of 230–380 K. The phase purity and quality of the films are assessed by micro-Raman spectroscopy based on the diamond Raman peak width and the amorphous carbon (a-C)presence in the spectra. Decreasing and increasing dependencies for TC with temperature are found for high and low quality samples, respectively. TC, as high as 1950±230 W m−1K−1 at room temperature, is measured for the most perfect material. A linear correlation between the TC at room temperature and the fraction of the diamond component in the Raman spectrum for the films is established.
  • [1]
    Pomeroy J W et al 2014 Appl. Phys. Lett. 104 083513
    [2]
    Ueda K et al 2006 Diam. Relat. Mater. 15 1954
    [3]
    Conte G et al 2012 Nanotechnology 23 025201
    [4]
    Oh A 2015 J. Instrument. 10 C04038
    [5]
    Girolami M et al 2012 IEEE Electron Device Lett. 33 224
    [6]
    Thumm M 2001 Diam. Relat. Mater. 10 1692
    [7]
    Anoikin E et al 2015 Components and packaging for laser systems SPIE Proc. 9346 93460T
    [8]
    Rogalin V E et al 2012 Russ. Microelectron. 41 464
    [9]
    Peng Y H et al 2013 Opt. Lett. 38 1709
    [10]
    Dayton J A et al 2005 IEEE Trans. Electron Dev. 52 695
    [11]
    Coe S E and Sussmann R S 2000 Diam. Relat. Mater. 9 1726
    [12]
    Twitchen D et al 2001 Diam. Relat. Mater. 10 731
    [13]
    Woerner E et al 2003 Diam. Relat. Mater. 12 744
    [14]
    Graebner J E et al 1994 Phys. Rev. B 50 3702
    [15]
    Inyushkin A V et al 2008 Phys. Stat. Sol. (a) 205 2226
    [16]
    Sukhadolau A V et al 2005 Diam. Relat. Mater. 14 589
    [17]
    Bolshakov A P et al 2016 Diam. Relat. Mater. 62 49
    [18]
    Graebner J E et al 1996 Diam. Relat. Mater. 5 693
    [19]
    Anaya J et al 2016 Acta Mater. 103 141
    [20]
    Ando Y et al 2002 Diam. Relat. Mater. 11 596
    [21]
    Mallik A K et al 2014 J. Adv. Ceram. 3 56
    [22]
    King D et al 2008 Diam. Relat. Mater. 17 520
    [23]
    Füner M, Wild C and Koidl P 1999 Surf. Coat. Technol.116 853
    [24]
    Grotjohn T et al 2005 Diam. Relat. Mater. 14 288
    [25]
    Tsai H Y, Kuo K L and Chin J 2007 Soc. Mech. Eng. 28 157
    [26]
    Liang Q et al 2014 Cryst. Growth & Design 14 3234
    [27]
    Goyal V et al 2012 Adv. Funct. Mater. 22 1525
    [28]
    Mallik A K et al 2014 Process. Appl. Ceram. 8 69
    [29]
    Smolin A A et al 1993 Appl. Phys. Lett. 62 3449
    [30]
    Williams O A et al 2007 Chem. Phys. Lett. 445 255
    [31]
    Ekimov E A et al 2008 Diam. Relat. Mater. 17 838
    [32]
    Nepsha V I 1998 Handbook of Industrial Diamonds and Diamond Films ed M A Prelas et al (New York: Dekker)
    [33]
    Tamor M A and Everson M P 1994 J. Mater. Res. 9 1839
    [34]
    Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
    [35]
    Khomich A V et al 2013 J. Appl. Spectrosc. 80 707
    [36]
    Liu W L et al 2006 Appl. Phys. Lett. 89 171915
    [37]
    Bachmann P K et al 1995 Diam. Relat. Mater. 4 820
    [38]
    Ho C Y, Powell R W and Liley P E 1972 J. Phys. Chem. Ref. Data 1 279
    [39]
    Wada N and Solin S A 1981 Physica B 105 353
  • Related Articles

    [1]Xiaoxi DUAN (段晓溪), Benqiong LIU (刘本琼), Huige ZHANG (张惠鸽), Ben LI (李犇), Jiting OUYANG (欧阳吉庭). Various patterns in dielectric barrier glow discharges simulated by a dynamic model[J]. Plasma Science and Technology, 2019, 21(8): 85401-085401. DOI: 10.1088/2058-6272/ab0d51
    [2]Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432
    [3]Siyin ZHOU (周思引), Xueke CHE (车学科), Wansheng NIE (聂万胜), Di WANG (王迪). Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process[J]. Plasma Science and Technology, 2018, 20(6): 65507-065507. DOI: 10.1088/2058-6272/aaac77
    [4]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [5]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [6]Fangmin HUANG (黄芳敏), Zhouyang LONG (龙洲洋), Sa LIU (刘飒), Zhenglong QIN (秦正龙). Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose[J]. Plasma Science and Technology, 2017, 19(4): 45504-045504. DOI: 10.1088/2058-6272/aa4c20
    [7]QI Xiaohua (齐晓华), YANG Liang (杨亮), YAN Huijie (闫慧杰), JIN Ying (金英), HUA Yue (滑跃), REN Chunsheng (任春生). Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(10): 1005-1011. DOI: 10.1088/1009-0630/18/10/07
    [8]LIN Qifu(林启富), NI Guohua(倪国华), JIANG Yiman(江贻满), WU Wenwei(吴文伟), MENG Yuedong(孟月东). Degradation of Alizarin Red by Hybrid Gas-Liquid Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(11): 1036-1041. DOI: 10.1088/1009-0630/16/11/07
    [9]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [10]Vadim Yu. PLAKSIN, Oleksiy V. PENKOV, Min Kook KO, Heon Ju LEE. Exhaust Cleaning with Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2010, 12(6): 688-691.

Catalog

    Article views (289) PDF downloads (887) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return