Advanced Search+
Sen WANG (王森), Qiping YUAN (袁旗平), Bingjia XIAO (肖炳甲). Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink[J]. Plasma Science and Technology, 2017, 19(3): 35601-035601. DOI: 10.1088/2058-6272/19/3/035601
Citation: Sen WANG (王森), Qiping YUAN (袁旗平), Bingjia XIAO (肖炳甲). Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink[J]. Plasma Science and Technology, 2017, 19(3): 35601-035601. DOI: 10.1088/2058-6272/19/3/035601

Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink

More Information
  • Received Date: July 26, 2016
  • Plasma control system (PCS), mainly developed for real-time feedback control calculation, plays a significant part during normal discharges in a magnetic fusion device, while the tokamak simulation code (TSC) is a nonlinear numerical model that studies the time evolution of an axisymmetric magnetized tokamak plasma. The motivation to combine these two codes for an integrated simulation is specified by the facts that the control system module in TSC is relatively simple compared to PCS, and meanwhile, newly-implemented control algorithms in PCS, before applied to experimental validations, require numerical validations against a tokamak plasma simulator that TSC can act as. In this paper, details of establishment of the integrated simulation framework between the EAST PCS and TSC are generically presented, and the poloidal power supply model and data acquisition model that have been implemented in this framework are described as well. In addition, the correctness of data interactions among the EAST PCS, Simulink and TSC is clearly confirmed during an interface test, and in a simulation test, the RZIP control scheme in the EAST PCS is numerically validated using this simulation platform.
  • [1]
    Walker M L et al 2015 Fusion Eng. Des. 96 716
    [2]
    Hahn S H et al 2014 Fusion Eng. Des. 89 542
    [3]
    Zhang K 2007 EAST simulation server based on rigid plasma model Master Thesis Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China (in Chinese)
    [4]
    Humphreys D A and Hutchinson I H 1993 Fusion Technol. 23 167
    [5]
    Wu B 2002 Discharge simulation of HT-7U tokamak PhD Thesis Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China (in Chinese)
    [6]
    Guo Y et al 2012 Plasma Phys. Control. Fusion 54 085022
    [7]
    Walker M L, Humphreys D A and Ferron J R 1997 Control of plasma poloidal shape and position in the DIII-D tokamak Proc. 36th Conf. on Decision and Control (San Diego, USA)
    [8]
    Yuan Q et al 2012 Fusion Eng. Des. 87 1912
    [9]
    Xiao B et al 2008 Fusion Eng. Des. 83 181
    [10]
    Jardin S C, Bell M G and Pomphrey N 1993 Nucl. Fusion 33 371
    [11]
    Jardin S C, Pomphrey N and DeLucia J 1986 J. Comput. Phys. 66 481
    [12]
    Guo Y 2011 Fast plasma boundary reconstruction and shape evolution simulation on EAST PhD Thesis Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China (in Chinese)
  • Related Articles

    [1]Ke CHEN, Lianghao WAN, Bingyan CHEN, Tao CHU, Renyue GENG, Deyu SONG, Xiang HE, Wei SU, Cheng YIN, Minglei SHAN, Yongfeng JIANG. Characteristics of water volatilization and oxides generation by using positive and negative corona[J]. Plasma Science and Technology, 2022, 24(4): 044007. DOI: 10.1088/2058-6272/ac567c
    [2]Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b
    [3]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [4]Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08
    [5]MA Tianpeng (马天鹏), ZHAO Qiong (赵琼), LIU Jianqi (刘建奇), ZHONG Fangchuan (钟方川). Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor[J]. Plasma Science and Technology, 2016, 18(6): 686-692. DOI: 10.1088/1009-0630/18/6/17
    [6]J. P. SARRETTE, O. EICHWALD, F. MARCHAL, O. DUCASSE, M. YOUSFI. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges[J]. Plasma Science and Technology, 2016, 18(5): 469-472. DOI: 10.1088/1009-0630/18/5/04
    [7]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [8]CHEN Dan (陈聃), ZENG Xinwu (曾新吾), WANG Yibo (王一博). The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1100-1105. DOI: 10.1088/1009-0630/16/12/04
    [9]LIU Xinghua(刘兴华), XIAN Richang(咸日常), SUN Xuefeng(孙学峰), WANG Tao(王涛), LV Xuebin(吕学宾), CHEN Suhong(陈素红), YANG Fan(杨帆). Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(8): 749-757. DOI: 10.1088/1009-0630/16/8/05
    [10]JIANG Nan(姜楠), LU Na (鲁娜), LI Jie(李杰), WU Yan(吴彦). Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Rreactor[J]. Plasma Science and Technology, 2012, 14(2): 140-146. DOI: 10.1088/1009-0630/14/2/11
  • Cited by

    Periodical cited type(12)

    1. Abdelazim, A., Aboulfotouh, A., Omar, M. et al. Enhanced laser-induced breakdown spectroscopy by pre-heated target and electric field: comprehensive review. Journal of Optics (India), 2025. DOI:10.1007/s12596-025-02651-5
    2. Wang, Y., Gao, H., Ye, J. et al. Simulation of laser-induced plasma temperature based on machine learning. Physics of Plasmas, 2024, 31(10): 103302. DOI:10.1063/5.0225293
    3. Yang, X., Wang, X., Li, D. et al. Effect of liquid aerosol temperature on the detection performance of LIBS for analysis of phosphorus element in water. Journal of Analytical Atomic Spectrometry, 2024, 39(2): 433-438. DOI:10.1039/d3ja00286a
    4. Wang, Q., Liu, Y., Jiang, L. et al. Metal micro/nanostructure enhanced laser-induced breakdown spectroscopy. Analytica Chimica Acta, 2023. DOI:10.1016/j.aca.2023.340802
    5. Liu, R.-B., Yin, Y.-S. Research progress on the related physical mechanism of laser-induced breakdown spectroscopy | [激光诱导击穿光谱技术相关物理机制研究进展]. Chinese Optics, 2023. DOI:10.37188/CO.2023-0019
    6. Liu, Y., Wang, Q., Jiang, L. et al. Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures. Chinese Physics B, 2022, 31(10): 105201. DOI:10.1088/1674-1056/ac6864
    7. Yang, Z., Ren, J., Du, M. et al. Enhanced Laser-Induced Breakdown Spectroscopy for Heavy Metal Detection in Agriculture: A Review. Sensors, 2022, 22(15): 5679. DOI:10.3390/s22155679
    8. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2021, 36(11): 2241-2305. DOI:10.1039/d1ja90049h
    9. Liu, M., Chen, A., Chen, Y. et al. Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy. Plasma Science and Technology, 2021, 23(7): 075501. DOI:10.1088/2058-6272/abf997
    10. Qi, W., Wang, Q., Shao, J. et al. Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas. Plasma Science and Technology, 2021, 23(4): 045501. DOI:10.1088/2058-6272/abe52c
    11. Li, Q., Chen, A., Zhang, D. et al. Time-resolved electron temperature and density of spark discharge assisted femtosecond laser-induced breakdown spectroscopy. Optik, 2021. DOI:10.1016/j.ijleo.2020.165812
    12. Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7

    Other cited types(0)

Catalog

    Article views (282) PDF downloads (756) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return