Advanced Search+
Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Linlin TANG (汤淋淋), Zhongwei WANG (王忠伟), Xiang JI (戢翔), Shuangsong DU (杜双松). Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with fiexible supports[J]. Plasma Science and Technology, 2017, 19(5): 55601-055601. DOI: 10.1088/2058-6272/aa57f4
Citation: Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Linlin TANG (汤淋淋), Zhongwei WANG (王忠伟), Xiang JI (戢翔), Shuangsong DU (杜双松). Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with fiexible supports[J]. Plasma Science and Technology, 2017, 19(5): 55601-055601. DOI: 10.1088/2058-6272/aa57f4

Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with fiexible supports

Funds: support of the Province Post-doctoral Foundation of Jiangsu (1501164B), the Technical Innovation Nurturing Foundation of Yangzhou University (2015CXJ016) and China Postdoctoral Science Foundation (2016M600447).
More Information
  • Received Date: September 19, 2016
  • In a fusion reactor, the edge localized mode (ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature, high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil (with flexible supports) of ITER (the International Thermonuclear Fusion Reactor),an electromagnetic–thermal–structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.
  • [1]
    Heitzenroeder P et al 2009 An overview of the ITER in-vessel coil systems 23rd IEEE/NPSS Symp. on Fusion Engineering (San Diego)
    [2]
    Kalish M et al 2011 ITER in-vessel coil design and R&D 24th IEEE/NPSS, Symp. on Fusion Engineering (Chicago)
    [3]
    Bohm B T et al 2011 Final Report on the Preliminary Design of the ITER In-Vessel Coil System Post Interim R&D Review Update
    [4]
    Brooks A et al 2013 Thermal and structural analysis of the ITER ELM coils 24th IEEE/NPSS Symp. on Fusion Engineering (San Francisco)
    [5]
    Zhang S et al 2014 Plasma Sci. Technol. 16 978
    [6]
    Zhang S et al 2014 Plasma Sci. Technol. 16 794
    [7]
    Zhang S et al 2014 Plasma Sci. Technol. 16 300
    [8]
    Villari R et al 2011 Fusion Eng. Des. 86 584
    [9]
    Zhang Y et al 2006 At. Energy Sci. Technol. 40 352 (in Chinese)
    [10]
    Zhang S et al 2011 Mach. Des. Manuf. 2011 194 (in Chinese)
    [11]
    Zhang Y et al 2012 At. Energy Sci. Technol. 46 212 (in Chinese)
    [12]
    Zhang S et al 2013 Mechanical analysis for ITER upper ELM coil 2013 IEEE 25th Symp. on Fusion Engineering (SOFE) (San Francisco)
    [13]
    Zhang S W et al 2014 Fusion Eng. Des. 89 385
  • Related Articles

    [1]Bo PENG (彭勃), Guorong ZHANG (张国荣). A voltage support control strategy based on three-port flexible multi-state switch in distribution networks[J]. Plasma Science and Technology, 2020, 22(8): 85603-085603. DOI: 10.1088/2058-6272/ab84ec
    [2]Chengzhi CAO (曹诚志), Yudong PAN (潘宇东), Zhiwei XIA (夏志伟), Bo LI (李波), Tao JIANG (江涛), Wei LI (李伟). Recent developments in the structural design and optimization of ITER neutral beam manifold[J]. Plasma Science and Technology, 2018, 20(2): 25602-025602. DOI: 10.1088/2058-6272/aa9562
    [3]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Rapid Thermal-Hydraulic Analysis and Design Optimization of ITER Upper ELM Coils[J]. Plasma Science and Technology, 2014, 16(10): 978-983. DOI: 10.1088/1009-0630/16/10/14
    [4]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), LU Su(卢速), JI Xiang(戢翔), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可), LUO Zhiren(罗志仁). Mechanical Analysis and Optimization of ITER Upper ELM Coil & Feeder[J]. Plasma Science and Technology, 2014, 16(8): 794-799. DOI: 10.1088/1009-0630/16/8/11
    [5]YANG Hong(杨洪), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟). Thermal and Hydraulic Analysis of the ITER Upper Vertical Stabilization Coil[J]. Plasma Science and Technology, 2014, 16(7): 706-711. DOI: 10.1088/1009-0630/16/7/13
    [6]ZHANG Shanwen(张善文), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟), JI Xiang(戢翔), E. DALY, M. KALISH, LU Su(卢速), DU Shuangsong(杜双松), LIU Xufeng(刘旭峰), FENG Changle(冯昌乐), YANG Hong(杨洪), WANG Songke(王松可). Design of Tokamak ELM Coil Support in High Nuclear Heat Environment[J]. Plasma Science and Technology, 2014, 16(3): 300-304. DOI: 10.1088/1009-0630/16/3/23
    [7]CAO Chengzhi(曹诚志), LIU Dequan(刘德权), LIN Tao(林涛), QIAO Tao(乔涛). Investigation on the Fatigue Characteristic in Support Structure of HL-2M Tokamak[J]. Plasma Science and Technology, 2014, 16(2): 172-176. DOI: 10.1088/1009-0630/16/2/15
    [8]ZHU Yinfeng (朱银锋), SONG Yuntao (宋云涛), ZHANG Yuanbin (张远斌), WANG Zhongwei (王忠伟). Conceptual Design and Analysis of Cold Mass Support of the CS3U Feeder for the ITER[J]. Plasma Science and Technology, 2013, 15(6): 599-604. DOI: 10.1088/1009-0630/15/6/20
    [9]LIAO Min (廖敏), LI Pengyuan (李鹏远), HOU Binglin (侯炳林), YANG Shujuan (杨淑娟), FU Youkun (付猷昆), R. GALLIX. Prototype Engineering Test Platform of ITER Magnet Gravity Support[J]. Plasma Science and Technology, 2013, 15(2): 192-195. DOI: 10.1088/1009-0630/15/2/24
    [10]WANG Songke (王松可), SONG Yuntao (宋云涛), XIE Han (谢韩), LEI Mingzhun (雷明准). Thermal-Structural Coupled Analysis of ITER Torus Cryo-Pump Housing[J]. Plasma Science and Technology, 2012, 14(11): 1011-1016. DOI: 10.1088/1009-0630/14/11/10

Catalog

    Article views (395) PDF downloads (708) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return