Advanced Search+
Yunhai HONG (洪运海), Chengxun YUAN (袁承勋), Jieshu JIA (贾洁姝), Ruilin GAO (高瑞林), Ying WANG (王莹), Zhongxiang ZHOU (周忠祥), Xiaoou WANG (王晓鸥), Hui LI (李辉), Jian WU (吴建). Propagation characteristics of microwaves in dusty plasmas with multi-collisions[J]. Plasma Science and Technology, 2017, 19(5): 55301-055301. DOI: 10.1088/2058-6272/aa5b29
Citation: Yunhai HONG (洪运海), Chengxun YUAN (袁承勋), Jieshu JIA (贾洁姝), Ruilin GAO (高瑞林), Ying WANG (王莹), Zhongxiang ZHOU (周忠祥), Xiaoou WANG (王晓鸥), Hui LI (李辉), Jian WU (吴建). Propagation characteristics of microwaves in dusty plasmas with multi-collisions[J]. Plasma Science and Technology, 2017, 19(5): 55301-055301. DOI: 10.1088/2058-6272/aa5b29
  • In this study, we consider three main collisions in dusty plasmas and investigate the effects of dust grains on the propagation of electromagnetic (EM) waves through uniform, unmagnetized and weakly ionized dusty plasma. The Drude model is improved to describe the dielectric property of dusty plasmas, which accounts for collisions including electron–molecule, electron– ion, and electron–dust particles. Based on the improved Drude model, the propagation characteristics of microwaves in dusty plasmas have been numerically calculated and studied. The results show that the propagation characteristics of microwaves through dusty plasmas are different from those through normal plasmas. The effects of dust density and size are mainly studied. Numerical results indicate that the momentum transfer between electrons and dust grains makes more energy loss. The dust density and dust size have a similar in?uence on EM wave propagation, resulting in less transmission and more absorption.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return