Advanced Search+
Jinxia ZHU (竹锦霞), Yipo ZHANG (张轶泼), Yunbo DONG (董云波), HL-A Team. Characterization of plasma current quench during disruptions at HL-2A[J]. Plasma Science and Technology, 2017, 19(5): 55101-055101. DOI: 10.1088/2058-6272/aa5ff2
Citation: Jinxia ZHU (竹锦霞), Yipo ZHANG (张轶泼), Yunbo DONG (董云波), HL-A Team. Characterization of plasma current quench during disruptions at HL-2A[J]. Plasma Science and Technology, 2017, 19(5): 55101-055101. DOI: 10.1088/2058-6272/aa5ff2

Characterization of plasma current quench during disruptions at HL-2A

Funds: This work was partially supported by National Natural Science Foundation of China (No. 11375004) and by the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2014GB109003).
More Information
  • Received Date: January 04, 2017
  • The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor con?guration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.
  • [1]
    Smith H et al 2006 Phys. Plasmas 13 102502
    [2]
    Yoshino R and Tokuda S 2000 Nucl. Fusion 40 1293
    [3]
    Riccardo V, Barabaschi P and Sugihara M 2005 Plasma Phys. Control. Fusion 47 117
    [4]
    Sugihara M et al 2004 20th IAEA Fusion Energy Conf. Vilamoura (Portugal)
    [5]
    Rosenbluth M N and Putvinski S V 1997 Nucl. Fusion 37 1355
    [6]
    ITER Physics Basis 1999 Nucl. Fusion 39 2137
    [7]
    Wang B et al 2016 Plasma Sci. Technol. 18 1162
    [8]
    Zhang Y P et al 2012 Phys. Plasmas 19 032510
    [9]
    Izzo V A, Parks P B and Lao L L 2009 Plasma Phys. Control. Fusion 51 105004
    [10]
    Zhang Y et al 2012 Phys. Scr. 86 025501
    [11]
    Gerhardt S P, Menard J E and NSTX Team 2009 Nucl. Fusion 49 025005
    [12]
    Kawano Y et al 2003 Proc. of the 30th EPS Conf. on Controlled Fusion and Plasma Physics (St. Petersburg)
    [13]
    Sugihara et al 2003 J. Plasma. Fusion Res 79 706
    [14]
    Li J et al 2013 Plasma Sci and Technol. 15 1241
  • Related Articles

    [1]Ruirui MA, Chen ZHAO, Yao ZHOU, Chang LIU. Numerical study of runaway current impact on sawtooth oscillations in tokamaks[J]. Plasma Science and Technology, 2025, 27(3): 035101. DOI: 10.1088/2058-6272/ad91e7
    [2]Zhongyong CHEN, Zhifang LIN, Wei YAN, Duwei HUANG, Yunong WEI, You LI, Nianheng CAI, Jie HU, Yonghua DING, Yunfeng LIANG, Zhonghe JIANG, J-TEXT Team. Overview of runaway current suppression and dissipation on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124009. DOI: 10.1088/2058-6272/aca272
    [3]Weiwei FAN (范伟伟), Bowen ZHENG (郑博文), Jing CAO (曹靖), Shibiao TANG (唐世彪), Qingwei YANG (杨青蔚), Zejie YIN (阴泽杰). Development of a fast electron bremsstrahlung diagnostic system based on LYSO and silicon photomultipliers during lower hybrid current drive for tokamak[J]. Plasma Science and Technology, 2019, 21(6): 65104-065104. DOI: 10.1088/2058-6272/ab0a77
    [4]Yonghua DING (丁永华), Zhongyong CHEN (陈忠勇), Zhipeng CHEN (陈志鹏), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Qiming HU (胡启明), Bo RAO (饶波), Jie CHEN (陈杰), Zhifeng CHENG (程芝峰), Li GAO (高丽), Zhonghe JIANG (江中和), Lu WANG (王璐), Zhijiang WANG (王之江), Xiaoqing ZHANG (张晓卿), Wei ZHENG (郑玮), Ming ZHANG (张明), Ge ZHUANG (庄革), Qingquan YU (虞清泉), Yunfeng LIANG (梁云峰), Kexun YU (于克训), Xiwei HU (胡希伟), Yuan PAN (潘垣), Kenneth William GENTLE, the J-TEXT Team. Overview of the J-TEXT progress on RMP and disruption physics[J]. Plasma Science and Technology, 2018, 20(12): 125101. DOI: 10.1088/2058-6272/aadcfd
    [5]Tao YANG (杨涛), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Jiao LI (李娇), Pan CHEN (陈攀), Yongxiang YIN (印永祥). Understanding CO2 decomposition by thermal plasma with supersonic expansion quench[J]. Plasma Science and Technology, 2018, 20(6): 65502-065502. DOI: 10.1088/2058-6272/aaa969
    [6]WANG Bo (王勃), Robert GRANETZ, XIAO Bingjia (肖炳甲), LI Jiangang (李建刚), YANG Fei (杨飞), LI Junjun (李君君), CHEN Dalong (陈大龙). Establishment and Assessment of Plasma Disruption and Warning Databases from EAST[J]. Plasma Science and Technology, 2016, 18(12): 1162-1168. DOI: 10.1088/1009-0630/18/12/04
    [7]DING Yonghua (丁永华), JIN Xuesong (金雪松), CHEN Zhenzhen (陈真真), ZHUANG Ge (庄革). Neural Network Prediction of Disruptions Caused by Locked Modes on J-TEXT Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1154-1159. DOI: 10.1088/1009-0630/15/11/14
    [8]ZHUANG Huidong (庄会东), ZHANG Xiaodong (张晓东). Development of a Fast Valve for Disruption Mitigation and its Preliminary Application to EAST and HT-7[J]. Plasma Science and Technology, 2013, 15(8): 745-749. DOI: 10.1088/1009-0630/15/8/05
    [9]SONG Xianying (宋先瑛), YANG Jinwei (杨进蔚), LI Xu (李旭), YUAN Guoliang (袁国梁), ZHANG Yipo (张轶泼). Synergetic Effects of Runaway and Disruption Induced by VDE on the First Wall Damage in HL-2A[J]. Plasma Science and Technology, 2012, 14(3): 207-214. DOI: 10.1088/1009-0630/14/3/05
    [10]LI Li(李莉), LIU Yue (刘悦), XU Xinyang(许欣洋), XIA Xinnian(夏新念). The Effect of Equilibrium Current Profiles on MHD Instabilities in Tokamaks[J]. Plasma Science and Technology, 2012, 14(1): 14-19. DOI: 10.1088/1009-0630/14/1/04

Catalog

    Article views (235) PDF downloads (562) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return