Advanced Search+
Liying ZHU (朱立颖), Linchun FU (付林春), Ming QIAO (乔明), Bo CUI (崔波), Qi CHEN (陈琦), Junyi LIN (林君毅). The characteristics of primary and secondary arcs on a solar array in low earth orbit[J]. Plasma Science and Technology, 2017, 19(5): 55304-055304. DOI: 10.1088/2058-6272/aa607a
Citation: Liying ZHU (朱立颖), Linchun FU (付林春), Ming QIAO (乔明), Bo CUI (崔波), Qi CHEN (陈琦), Junyi LIN (林君毅). The characteristics of primary and secondary arcs on a solar array in low earth orbit[J]. Plasma Science and Technology, 2017, 19(5): 55304-055304. DOI: 10.1088/2058-6272/aa607a

The characteristics of primary and secondary arcs on a solar array in low earth orbit

Funds: Supported by National Natural Science Foundation of China (No. 51407008)
More Information
  • Received Date: July 27, 2016
  • In this paper, the characteristics of the primary arc and secondary arc on a solar array in low earth orbit (LEO) are investigated. The vacuum plasma environment in LEO has been used to study the primary arc and secondary arc of a high-voltage solar array. Silicon solar cells with rigid substrate specimens are used for the experiment. The series-parallel spacing of the silicon solar cells is 1 mm. The string currents of the solar cells are 0.7 A, 1.5 A and 2 A. The primary arc and secondary arc are photographed by high-speed cameras. The differences between the primary arc and secondary arc are observed. The secondary arc can be observed before the primary arc is extinguished. The primary arc is a single arc when the string current is 0.7 A. Multiple arc columns are accompanied by higher arc current. Two arc columns of the primary arc can be observed at 1.5 A string current and 2 A string current. The multiple primary arc columns are related to higher bias voltage. The threshold for sustained arcing is near 145 V/0.7A, 105V/ 1.5A and 100V/2 A at 1 mm string gap. Moreover, the transition time of secondary arc formation is analyzed, and found to be about 10–13 μs. The string currents, string voltages and primary arc have no effect on the transition time of the secondary arc formation.
  • [1]
    Cho M et al 2014 J. Spacecr. Rockets 51 379
    [2]
    Wright K H Jr et al 2015 IEEE Trans. Plasma Sci. 43 2993
    [3]
    Bodeau M 2014 IEEE Trans. Plasma Sci. 42 1917
    [4]
    Bao H A et al 2012 IEEE Trans. Plasma Sci. 40 324
    [5]
    Wong F K et al 2013 IEEE Trans. Plasma Sci. 41 3359
    [6]
    Wright K H et al 2012 IEEE Trans. Plasma Sci. 40 334
    [7]
    Katz I, Davis V A and Snyder D B 1998 Mechanism for spacecraft charging initiated destruction of solar arrays in GEO 36th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV)
    [8]
    Cho M et al 2009 J. Spacecr. Rockets 46 438
    [9]
    Okumura T et al 2015 J. Spacecr. Rockets 47 533
    [10]
    Endo T et al 2010 Effect of aging on discharge tolerance of grouted solar array panels con?rmed by simulated space environment 11th Spacecraft Charging Technology Conf. (Albuquerque, NM)
    [11]
    Levy L et al 2001 Secondary arcs on solar arrays: occurrence, thresholds, characteristics and induced damage 7th Spacecraft Charging Technology Conf. (ESA Noordwijk, The Netherlands)
    [12]
    Masui H et al 2015 J. Spacecr. Rockets 47 966
    [13]
    Vayner B and Galofaro J T 2012 IEEE Trans. Plasma Sci. 40 388
    [14]
    Bodeau M 2012 IEEE Trans. Plasma Sci. 40 192
    [15]
    Bodeau J M 2013 J. Spacecr. Rockets 50 1277
    [16]
    Okumura T et al 2009 J. Spacecr. Rockets 46 689
    [17]
    Okumura T et al 2009 J. Spacecr. Rockets 46 697
    [18]
    Masui H et al 2014 J. Spacecr. Rockets 51 922
    [19]
    Ge G W et al 2016 IEEE Trans. Plasma Sci. 44 79
    [20]
    Liao M F et al 2016 IEEE Trans. Plasma Sci. 44 2455
    [21]
    Wang Z X et al 2015 IEEE Trans. Plasma Sci. 43 3734
    [22]
    Zhu L Y, Wu J W and Jiang Y 2014 Plasma Sci. Technol. 16 454
    [23]
    Jiang Y and Wu J W 2016 Plasma Sci. Technol. 18 311
  • Related Articles

    [1]Dejie WEI, Jianwen WU, Liying ZHU. Study on plasma expansion model of primary discharge on spacecraft solar array[J]. Plasma Science and Technology, 2024, 26(11): 115301. DOI: 10.1088/2058-6272/ad718b
    [2]Haoxi CONG, Yuxuan WANG, Lipan QIAO, Wenjing SU, Qingmin LI. A spatiotemporal evolution model of a short-circuit arc to a secondary arc based on the improved charge simulation method[J]. Plasma Science and Technology, 2024, 26(1): 015503. DOI: 10.1088/2058-6272/ad0c22
    [3]Liying ZHU (朱立颖), Zhigang LIU (刘治钢), Xiaofeng ZHANG (张晓峰), Chao WANG (王超), Xiaofei LI (李小飞), Bingxin ZHAO (赵冰欣). Study on volt-ampere characteristics of solar array arcs in LEO spacecraft[J]. Plasma Science and Technology, 2019, 21(2): 25302-025302. DOI: 10.1088/2058-6272/aaf18a
    [4]D B MELROSE. Rethinking the solar flare paradigm[J]. Plasma Science and Technology, 2018, 20(7): 74003-074003. DOI: 10.1088/2058-6272/aab966
    [5]Saravanan ARUMUGAM, Prince ALEX, Suraj Kumar SINHA. Feedback model of secondary electron emission in DC gas discharge plasmas[J]. Plasma Science and Technology, 2018, 20(2): 25404-025404. DOI: 10.1088/2058-6272/aa8e3f
    [6]Lele WANG (王乐乐), XiutaoHUANG (黄修涛), Junfeng CHEN (陈俊峰), Shengming WANG (王圣明), Zhaoyang HU (胡朝阳), Minghai LIU (刘明海). Simulated and experimental studies on the array dielectric barrier discharge of water electrodes[J]. Plasma Science and Technology, 2017, 19(3): 35402-035402. DOI: 10.1088/2058-6272/19/3/035402
    [7]Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504
    [8]CONG Haoxi (丛浩熹), LI Qingmin (李庆民), XING Jinyuan (行晋源), LI Jinsong (李劲松), CHEN Qiang (陈强). Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines[J]. Plasma Science and Technology, 2015, 17(6): 475-480. DOI: 10.1088/1009-0630/17/6/07
    [9]CONG Haoxi(丛浩熹), LI Qingmin(李庆民), XING Jinyuan(行晋源), LI Jinsong(李劲松). Typical Motion and Extinction Characteristics of the Secondary Arcs Associated with Half-Wavelength Transmission Lines[J]. Plasma Science and Technology, 2014, 16(9): 843-847. DOI: 10.1088/1009-0630/16/9/07
    [10]HAO Xiping (郝希平), SONG Zhiqiang (宋志), HE Jian (贺健), LI Qiuze (李秋泽), et al.. Calculation of the Effect of Opacity on the Solar Spectral Lines of CIV[J]. Plasma Science and Technology, 2013, 15(8): 760-763. DOI: 10.1088/1009-0630/15/8/08

Catalog

    Article views (301) PDF downloads (987) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return