Advanced Search+
Xiuquan CAO (曹修全), Deping YU (余德平), Yong XIANG (向勇), Chao LI (李超), Hui JIANG (江汇), Jin YAO (姚进). Study on the ignition process of a segmented plasma torch[J]. Plasma Science and Technology, 2017, 19(7): 75404-075404. DOI: 10.1088/2058-6272/aa62f9
Citation: Xiuquan CAO (曹修全), Deping YU (余德平), Yong XIANG (向勇), Chao LI (李超), Hui JIANG (江汇), Jin YAO (姚进). Study on the ignition process of a segmented plasma torch[J]. Plasma Science and Technology, 2017, 19(7): 75404-075404. DOI: 10.1088/2058-6272/aa62f9

Study on the ignition process of a segmented plasma torch

Funds: The authors appreciate the support of National Natural Science Foundation of China (No. 51405315) and the Talents Introduction Project of Sichuan University (No. yj2012043).
More Information
  • Direct current plasma torches have been applied to generate unique sources of thermal energy in many industrial applications. Nevertheless, the successful ignition of a plasma torch is the key process to generate the unique source (plasma jet). However, there has been little study on the underlying mechanism of this key process. A thorough understanding of the ignition process of a plasma torch will be helpful for optimizing the design of the plasma torch structure and selection of the ignition parameters to prolong the service life of the ignition module. Thus, in this paper, the ignition process of a segmented plasma torch (SPT) is theoretically and experimentally modeled and analyzed. Corresponding electrical models of different stages of the ignition process are set up and used to derive the electrical parameters, e.g. the variations of the arc voltage and arc current between the cathode and anode. In addition, the experiments with different ignition parameters on a home-made SPT have been conducted. At the same time, the variations of the arc voltage and arc current have been measured, and used to verify the ones derived in theory and to determine the optimal ignition parameters for a particular SPT.
  • Related Articles

    [1]Xinyao CHENG, Huimin SONG, Shengfang HUANG, Yifei ZHU, Zhibo ZHANG, Zhenyang LI, Min JIA. Discharge and jet characteristics of gliding arc plasma igniter driven by pressure difference[J]. Plasma Science and Technology, 2022, 24(11): 115502. DOI: 10.1088/2058-6272/ac7af6
    [2]Li FEI (费力), Bingbing ZHAO (赵兵兵), Xiong LIU (刘雄), Liming HE (何立明), Jun DENG (邓俊), Jianping LEI (雷健平), Zichen ZHAO (赵子晨), Zhiyu ZHAO (赵志宇). Application study on plasma ignition in aeroengine strut–cavity–injector integrated afterburner[J]. Plasma Science and Technology, 2021, 23(10): 105504. DOI: 10.1088/2058-6272/ac183c
    [3]Fangyuan LIU (刘方圆), Deping YU (余德平), Cheng LV (吕程), Yazhou DUAN (段亚洲), Yanjie ZHONG (钟严杰), Jin YAO (姚进). Experimental study on the jet characteristics of a steam plasma torch[J]. Plasma Science and Technology, 2018, 20(12): 125401. DOI: 10.1088/2058-6272/aad9f1
    [4]DONG Yunsong (董云松), YANG Jiamin (杨家敏), SONG Tianming (宋天明), ZHU Tuo (朱托), HUANG Chengwu (黄成武). Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition[J]. Plasma Science and Technology, 2016, 18(4): 376-381. DOI: 10.1088/1009-0630/18/4/08
    [5]Sanghyup LEE, Kwanyoung NOH, Jihwan LIM, Woongsup YOON. A Steam-Plasma Igniter for Aluminum Powder Combustion[J]. Plasma Science and Technology, 2015, 17(5): 392-401. DOI: 10.1088/1009-0630/17/5/06
    [6]ZHAO Bingbing(赵兵兵), HE Liming(何立明), DU Hongliang(杜宏亮), ZHANG Hualei(张华磊). Electrical Characteristics of an Alternating Current Plasma Igniter in Airflow[J]. Plasma Science and Technology, 2014, 16(4): 370-373. DOI: 10.1088/1009-0630/16/4/12
    [7]Mohadeseh MOOSAVI, Abbas GHASEMIZAD, Mohamad Jafar TABATABAEI. Investigation of Fuel Energy Gain for Tritium-Poor Fuels in Fast Ignition Fusion Approach[J]. Plasma Science and Technology, 2013, 15(10): 996-1001. DOI: 10.1088/1009-0630/15/10/07
    [8]Asma BEGUM, Mounir LAROUSSI, M. R. PERVEZ. A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil[J]. Plasma Science and Technology, 2013, 15(7): 627-634. DOI: 10.1088/1009-0630/15/7/05
    [9]Heinrich HORA, George H. MILEY, HE Xiantu, ZHENG Wudi, Paraskevas LALOUSIS, Istvan F?OLDES, Sandor SZATMARI, Stavros MOUSTAIZIS, Reynaldo CASTILLO. Ultrahigh Acceleration of Plasma Blocks by Nonlinear Forces for Side-On Laser Ignition of Solid Density Fusion Fuel[J]. Plasma Science and Technology, 2013, 15(5): 420-424. DOI: 10.1088/1009-0630/15/5/05
    [10]M. MAHDAVI, A. GHOLAMI. Ignition Conditions for Simulated Fuel Pellets in Degenerate Plasma[J]. Plasma Science and Technology, 2013, 15(4): 323-328. DOI: 10.1088/1009-0630/15/4/04
  • Cited by

    Periodical cited type(3)

    1. Su, M., Yang, Z., Cai, K. et al. Study on the tribocharging properties of MgCO3 particles based on LFN-en-A model. Measurement Science and Technology, 2024, 35(11): 115305. DOI:10.1088/1361-6501/ad662b
    2. Jiang, D., Hu, S., Cheng, W. Rock breaking model implementation for rigless drilling with robust control of vibration. Applied Mathematics and Nonlinear Sciences, 2024, 9(1): 20230684. DOI:10.2478/amns.2023.2.00684
    3. Yan, G., Fu, H., Zhao, Y. et al. A review on optimizing potentials of high voltage pulse breakage technology based on electrical breakdown in water. Powder Technology, 2022. DOI:10.1016/j.powtec.2022.117293

    Other cited types(0)

Catalog

    Article views (258) PDF downloads (869) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return