Advanced Search+
Zehua XIAO (肖泽铧), Di XU (徐迪), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6): 64009-064009. DOI: 10.1088/2058-6272/aa632c
Citation: Zehua XIAO (肖泽铧), Di XU (徐迪), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6): 64009-064009. DOI: 10.1088/2058-6272/aa632c

High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor

  • Dielectric barrier discharge (DBD) is utilized to decompose xylene vapor in mobile gas under normal atmospheric pressure. The plasma is generated by an AC power source with a frequency of 6 kHz. In the experiment, the discharge power on the DBD reactor was calculated by a Lissajous figure, and the specific input energy (SIE) of different discharge voltage or residence time was obtained. The concentrations of xylene, carbon monoxide and carbon dioxide in the gas were analyzed by gas chromatography. The spectra of DBD were diagnosed using a spectrometer. We calculated the conversion rate (CR), mineralization rate (MR) and carbon dioxide selectivity. The relationship between these quantities and the SIE was analyzed. The experimental results show that high concentration xylene can be decomposed mostly by DBD plasma. The CR can reach as high as 90% with the main product of carbon dioxide.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return