Advanced Search+
Danijela VUJOŠEVIC, Uroš CVELBAR, Urška REPNIK, Martina MODIC, Saša LAZOVIC, Tina ZAVAŠNIK-BERGANT, Nevena PUAC, Boban MUGOŠA, Evangelos GOGOLIDES, Zoran Lj PETROVIC, Miran MOZETIC. Plasma effects on the bacteria Escherichia coli via two evaluation methods[J]. Plasma Science and Technology, 2017, 19(7): 75504-075504. DOI: 10.1088/2058-6272/aa656b
Citation: Danijela VUJOŠEVIC, Uroš CVELBAR, Urška REPNIK, Martina MODIC, Saša LAZOVIC, Tina ZAVAŠNIK-BERGANT, Nevena PUAC, Boban MUGOŠA, Evangelos GOGOLIDES, Zoran Lj PETROVIC, Miran MOZETIC. Plasma effects on the bacteria Escherichia coli via two evaluation methods[J]. Plasma Science and Technology, 2017, 19(7): 75504-075504. DOI: 10.1088/2058-6272/aa656b

Plasma effects on the bacteria Escherichia coli via two evaluation methods

Funds: The financial support from the Slovenian Research Agency (ARRS), NATO CLG/SPS.984555 and EU COST grant MP1101 is gratefully acknowledged. NP, SL and ZLP are grateful to the MESS 171037 and 41011 projects for partial support..
More Information
  • The degradation of Escherichia coli bacteria by treatment with cold, weakly ionised, highly dissociated oxygen plasma, with an electron temperature of 3 eV, a plasma density of 8×1015 m−3 and a neutral oxygen atom density of 3.5×1021 m−3 was studied. To determine the ‘real’ plasma effects, two methods were used for evaluation and determination, as well as a comparison of the number of bacteria that had survived: the standard plate count technique (PCT) and advanced fluorescence-activated cell sorting (FACS). Bacteria were deposited onto glass substrates and kept below 50 °C during the experiments with oxygen plasma. The results showed that the bacteria had fully degraded after about 2 min of plasma treatment, depending slightly on the amount of bacteria that had been?deposited on the substrates. The very precise determination of the O flux on the substrates and the two-method comparison allowed for the determination of the critical dose of oxygen atoms required for the destruction of a bacterial cell wall—about 6×1024 m−2—as well as deactivation of the substrates—about 8×1025 m−2. These results were taken in order to discuss other results obtained by comparable studies and scientific method?evaluations in the determination of plasma effects on bacteria.
  • Related Articles

    [1]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in dense plasmas with relativistic degenerate electrons and positrons[J]. Plasma Science and Technology, 2019, 21(4): 45301-045301. DOI: 10.1088/2058-6272/aaf20f
    [2]Victor TARASENKO, Dmitry BELOPLOTOV, Mikhail LOMAEV, Dmitry SOROKIN. E-beam generation in discharges initiated by voltage pulses with a rise time of 200 ns at an air pressure of 12.5–100 kPa[J]. Plasma Science and Technology, 2019, 21(4): 44007-044007.
    [3]Wei ZHANG (张伟), Tongyu WU (吴彤宇), Bowen ZHENG (郑博文), Shiping LI (李世平), Yipo ZHANG (张轶泼), Zejie YIN (阴泽杰). A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-fiight neutron spectrometer[J]. Plasma Science and Technology, 2018, 20(4): 45601-045601. DOI: 10.1088/2058-6272/aaaaa9
    [4]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [5]Xiaoyan BAI (白小燕), Chen CHEN (陈晨), Hong LI (李弘), Wandong LIU (刘万东). Investigations on the time evolution of the plasma density in argon electron-beam plasma at intermediate pressure[J]. Plasma Science and Technology, 2017, 19(3): 35003-035003. DOI: 10.1088/2058-6272/19/3/035003
    [6]FU Qiang (付强), TANG Ying (唐影), ZHAO Jinsong (赵金松), LU Jianyong (吕建永). Low-Frequency Waves in Cold Three-Component Plasmas[J]. Plasma Science and Technology, 2016, 18(9): 897-901. DOI: 10.1088/1009-0630/18/9/04
    [7]M. L. SHAH, A. K. PULHANI, B. M. SURI, G. P. GUPTA. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 546-551. DOI: 10.1088/1009-0630/15/6/11
    [8]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02
    [9]XIAO Dengming (肖登明), DENG Yunkun (邓云坤). Determination of Electron Swarm Parameters in Pure CHF3 and CF4 by a Time-Resolved Method[J]. Plasma Science and Technology, 2013, 15(1): 25-29. DOI: 10.1088/1009-0630/15/1/05
    [10]ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546.

Catalog

    Article views (269) PDF downloads (662) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return