Advanced Search+
Gen LI (李根), Xuechao WEI (魏学朝), Haiqing LIU (刘海庆), Junjie SHEN (申俊杰), Yinxian JIE (揭银先), Hui LIAN (连辉), Long ZENG (曾龙), Zhiyong ZOU (邹志勇), Jibo ZHANG (张际波), Shouxin WANG (王守信). Development of an HCN dual laser for the interferometer on EAST[J]. Plasma Science and Technology, 2017, 19(8): 84003-084003. DOI: 10.1088/2058-6272/aa667b
Citation: Gen LI (李根), Xuechao WEI (魏学朝), Haiqing LIU (刘海庆), Junjie SHEN (申俊杰), Yinxian JIE (揭银先), Hui LIAN (连辉), Long ZENG (曾龙), Zhiyong ZOU (邹志勇), Jibo ZHANG (张际波), Shouxin WANG (王守信). Development of an HCN dual laser for the interferometer on EAST[J]. Plasma Science and Technology, 2017, 19(8): 84003-084003. DOI: 10.1088/2058-6272/aa667b

Development of an HCN dual laser for the interferometer on EAST

Funds: This work was funded by the International Thermonuclear Experimental Reactor (ITER) project plan (Nos. 2012GB101002 and 2014GB106002) and National Natural Science Foundation of China (Contract Nos. 11105184, 11375237 and 51605330). This work was supported in part by the Collaborative Research Program of the Research Institute for Applied Mechanics, Kyushu University. This work was partially supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC No. 11261140328)
More Information
  • A two-color continuous wave (CW) discharge-pumped far-infrared (FIR) hydrogen cyanide (HCN) laser was developed as the source of an interferometer for measuring the line-averaged electron density in the Experimental Advanced Superconducting Tokamak (EAST). The output power of the dual laser system was about 120mW from each laser on the 337 μm (0.89 THz) line. The polarization of each output beam was fixed using thin tungsten filaments and oscillated
    in the EH11 mode. Different megahertz intermediate frequencies (IF) and a slight frequency offset (∼1 MHz) were generated in this system to replace the traditional rotating grating with ∼10 kHz IF, and this can improve the time resolution of the interferometer significantly. The experimental result showed that different IF signals were obtained by successfully adjusting the cavity length. In particular, the beat frequency was captured at ∼1.3 MHz by a Schottky mixer when the length of the resonant cavities was changed by 5 μm by an automatic adjustment system. In order to study the character of IF, a long time record of the IF signal was carried out, and the IF signal could be stabilized for a few minutes in the range of 2 MHz to 3 MHz. A realtime IF stability control system was initially designed for long pulse discharge experiments on the EAST. The ∼MHz frequency response and good phase sensitivity of the dual laser HCN interferometer will allow the system to track fast density profiles and resolve fast MHD events, such as tearing/neoclassical tearing, disruptions, etc.
  • Related Articles

    [1]Kexi Han, Zhongbing Shi, Xin Yu, Min Jiang, Zengchen Yang, Yu Zhou, Yuqi Shen, Weichu Deng, Liwen Hu, Anshu Liang, Peiwan Shi, Sen Xu. Quasi-optical characterization and preliminary experimental results of electron cyclotron emission imaging on HL-3 tokamak[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adc29a
    [2]Hao XU, Shaobo GONG, Yi YU, Min XU, Tao LAN, Zhibin WANG, Zhongbing SHI, Lin NIE, Guangyi ZHAO, Hao LIU, Yixuan ZHOU, Zihao YUAN, Chenyu XIAO, Jian CHEN. Optical design of a novel near-infrared phase contrast imaging (NI-PCI) diagnostic on the HL-2A tokamak[J]. Plasma Science and Technology, 2024, 26(3): 034005. DOI: 10.1088/2058-6272/ad0e0b
    [3]Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5
    [4]Zhongbing SHI (石中兵), Wulyu ZHONG (钟武律), Min JIANG (蒋敏). Progress of microwave diagnostics development on the HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(9): 94007-094007. DOI: 10.1088/2058-6272/aad27b
    [5]Qiyun CHENG (程启耘), Yi YU (余羿), Shaobo GONG (龚少博), Min XU (许敏), Tao LAN (兰涛), Wei JIANG (蒋蔚), Boda YUAN (袁博达), Yifan WU (吴一帆), Lin NIE (聂林), Rui KE (柯锐), Ting LONG (龙婷), Dong GUO (郭栋), Minyou YE (叶民友), Xuru DUAN (段旭如). Optical path design of phase contrast imaging on HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125601. DOI: 10.1088/2058-6272/aa8d64
    [6]Dongxu CHEN (陈东旭), Yilun ZHU (朱逸伦), Zhenling ZHAO (赵朕领), Chengming QU (渠承明), Wang LIAO (廖望), Jinlin XIE (谢锦林), Wandong LIU (刘万东). An intelligent remote control system for ECEI on EAST[J]. Plasma Science and Technology, 2017, 19(8): 84005-084005. DOI: 10.1088/2058-6272/aa6e4a
    [7]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [8]ZHU Yilun (朱逸伦), ZHAO Zhenling (赵朕领), TONG Li (仝丽), CHEN Dongxu (陈东旭), XIE Jinlin (谢锦林), LIU Wandong (刘万东). Optics System Design of Microwave Imaging Reflectometry for the EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(4): 449-452. DOI: 10.1088/1009-0630/18/4/20
    [9]WANG Zesong (王泽松), ZHANG Zaodi (张早娣), HE Jun (何俊), LEE Jae Choon (李载春), LIU Chuansheng Liu (刘传胜), WU Xianying (吴先映), FU Dejun (付德君). A Computerized System for the Measurement of Nanomaterial Field Emission and Ionization[J]. Plasma Science and Technology, 2012, 14(9): 819-823. DOI: 10.1088/1009-0630/14/9/09
    [10]WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566.

Catalog

    Article views (461) PDF downloads (675) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return