Advanced Search+
N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
Citation: N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d

Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production

More Information
  • Received Date: March 04, 2017
  • In the present paper, we carried out a theoretical study of dielectric barrier discharge (DBD) filled with pure methane gas. The homogeneous discharge model used in this work includes a plasma chemistry unit, an electrical circuit, and the Boltzmann equation. The model was applied to the case of a sinusoidal voltage at a period frequency of 50 kHz and under a gas pressure of 600 Torr. We investigated the temporal variation of electrical and kinetic discharge parameters such as plasma and dielectric voltages, the discharge current density, electric field, deposited power density, and the species concentration. We also checked the physical model validity by comparing its results with experimental work. According to the results discussed herein, the dielectric capacitance is the parameter that has the greatest effect on the methane conversion and H2/CH4 ratio. This work enriches the knowledge for the improvement of DBD for CH4 conversion and hydrogen production.
  • [1]
    Züttel A, Borgschulte A and Schlapbach L 2007 Hydrogen as a Future Energy Carrier (Weinheim: Wiley)
    [2]
    XuCandTu X2013 J. Energy Chem. 22 420
    [3]
    Snoeckx R et al 2013 J. Phys. Chem. C 117 4957
    [4]
    Ozkan A et al 2015 J. CO2 Util. 9 74
    [5]
    Rumpel S et al 2014 Energy Environ. Sci. 7 3296
    [6]
    Kruse O and Hankamer B 2010 Curr. Opin. Biotechnol. 21 238
    [7]
    Hwang J-H et al 2014 Energy 78 887
    [8]
    Zeng K and Zhang D K 2010 Prog. Energ. Combust. Sci. 36 307
    [9]
    Mini? D 2012 Hydrogen Energy: Challenges and Perspectives (Croatia: InTeOp)
    [10]
    Kogelschatz U 2012 J. Opt. Technol. 79 484
    [11]
    Benyamina M, Belasri A and Khodja K 2014 Ozone: Sci. Eng. 36 253
    [12]
    Wang B W et al 2013 J. Energy Chem. 22 876
    [13]
    Nguyen D B and Lee W G 2015 Korean J. Chem. Eng. 32 62
    [14]
    Zhang X et al 2009 Chin. J. Chem. Eng. 17 625
    [15]
    Scapinello M et al 2016 J. Phys. D: Appl. Phys. 49 075602
    [16]
    Thanompongchart P and Tippayawong N 2014 Int. J. Chem. Eng. 2014 609836
    [17]
    De Bie C et al 2011 Plasma Process. Polym. 8 1033
    [18]
    Dorai R, Hassouni K and Kushner M J 2000 J. Appl. Phys. 88 6060
    [19]
    Dorai R 2002 Modeling of atmospheric pressure plasma processing of gases and surfaces PhD Dissertation University of Illinois, Champaign, IL
    [20]
    Snoeckx R et al 2015 RSC Adv. 5 29799
    [21]
    Liu S Y et al 2014 J. Phys. Chem. C 118 10686
    [22]
    Levko D S and Tsymbalyuk A N 2015 Tech. Phys Lett. 41 228
    [23]
    Shchedrin A I et al 2008 JETP Lett. 88 99
    [24]
    Tu X et al 2011 J. Phys. D: Appl. Phys. 44 274007
    [25]
    Tu X and Whitehead J C 2012 Appl. Catal. B: Environ. 125 439
    [26]
    Tu X and Whitehead J C 2014 Int. J. Hydrogen Energy 39 9658
    [27]
    Jasiński M, Dors M and Mizeraczyk J 2008 J. Power Sources 181 41
    [28]
    Jasiński M, Dors M and Mizeraczyk J 2009 Eur. Phys. J. D 54 179
    [29]
    Jasiński M et al 2011 J. Phys. D: Appl. Phys. 44 194002
    [30]
    Jasiński M et al 2013 Int. J. Hydrogen Energy 38 11473
    [31]
    Horng R-F et al 2007 Fuel 86 81
    [32]
    Czylkowski D et al 2016 Energy 113 653
    [33]
    Zou J J et al 2002 Acta Phys. -Chim. Sin. 18 759
    [34]
    Zou J J et al 2003 Plasma Chem. Plasma Process. 23 69
    [35]
    Zou J and Liu C-J 2004 Plasma Sci. Technol. 6 2585
  • Related Articles

    [1]B I MIN, D K DINH, D H LEE, T H KIM, S CHOI. Numerical modelling of a low power non-transferred arc plasma reactor for methane conversion[J]. Plasma Science and Technology, 2019, 21(6): 64005-064005. DOI: 10.1088/2058-6272/ab00ce
    [2]Weiwei XU (徐卫卫), Xiuling ZHANG (张秀玲), Mengyue DONG (董梦悦), Jing ZHAO (赵静), Lanbo DI (底兰波). Plasma-assisted Ru/Zr-MOF catalyst for hydrogenation of CO2 to methane[J]. Plasma Science and Technology, 2019, 21(4): 44004-044004. DOI: 10.1088/2058-6272/aaf9d2
    [3]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [4]N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
    [5]Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2017, 19(11): 115504. DOI: 10.1088/2058-6272/aa7ced
    [6]CHEN Huixia(陈慧黠), XIU Zhilong(修志龙), BAI Fengwu(白凤武). Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma[J]. Plasma Science and Technology, 2014, 16(6): 602-607. DOI: 10.1088/1009-0630/16/6/12
    [7]FU Tingjun(付廷俊), HUANG Chengdu(黄承都), LV Jing(吕静), LI Zhenhua(李振花). Fischer-Tropsch Performance of an SiO 2 -Supported Co-Based Catalyst Prepared by Hydrogen Dielectric-Barrier Discharge Plasma[J]. Plasma Science and Technology, 2014, 16(3): 232-238. DOI: 10.1088/1009-0630/16/3/11
    [8]HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13
    [9]N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07
    [10]Vadim Yu. PLAKSIN, Oleksiy V. PENKOV, Min Kook KO, Heon Ju LEE. Exhaust Cleaning with Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2010, 12(6): 688-691.

Catalog

    Article views (268) PDF downloads (652) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return