Advanced Search+
LIU (刘泽), Guogang YU (余国刚), Anping HE (何安平), Ling WANG (王玲). Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis[J]. Plasma Science and Technology, 2017, 19(9): 95602-095602. DOI: 10.1088/2058-6272/aa719d
Citation: LIU (刘泽), Guogang YU (余国刚), Anping HE (何安平), Ling WANG (王玲). Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis[J]. Plasma Science and Technology, 2017, 19(9): 95602-095602. DOI: 10.1088/2058-6272/aa719d

Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis

More Information
  • Received Date: March 09, 2017
  • The physical vapor deposition method is an effective way to deposit AI2O3 and Er2O3 on 316L stainless steel substrates acting as tritium permeation barriers in a fusion reactor. The distribution of residual thermal stress is calculated both in Al2O3 and Er2O3 coating systems with planar and rough substrates using finite element analysis. The parameters influencing the thermal stress in the sputter process are analyzed, such as coating and substrate properties, temperature and Young’s modulus. This work shows that the thermal stress in AI2O3 and Er2O3 coating systems exhibit a linear relationship with substrate thickness, temperature and Young’s modulus. However, this relationship is inversed with coating thickness. In addition, the rough substrate surface can increase the thermal stress in the process of coating deposition. The adhesive strength between the coating and the substrate is evaluated by the shear stress. Due to the higher compressive shear stress, the AI2O3 coating has a better adhesive strength with a 316L stainless steel substrate than the Er2O3 coating. Furthermore, the analysis shows that it is a useful way to improve adhesive strength with increasing interface roughness.
  • [1]
    Yang F L et al 2016 J. Nucl. Mater. 478 144
    [2]
    Wong C P C et al 2008 Fusion Eng. Des. 83 850
    [3]
    Wu Y Y et al 2015 Fusion Eng. Des. 90 105
    [4]
    ?panková M et al 2005 Mater. Sci. Eng. B 116 30
    [5]
    Nakamichi M, Kawamura H and Teratani T 2001 J. Nucl. Sci. Technol. 38 1007
    [6]
    Perujo A et al 2000 J. Nucl. Mater. 283–287 1292
    [7]
    Nagura M et al 2011 J. Nucl. Mater. 417 1210
    [8]
    Chikada T et al 2010 Fusion Eng. Des. 85 1537
    [9]
    Zeng Y et al 2010 J. Electroanal. Chem. 649 277
    [10]
    He D et al 2013 Int. J. Hydrogen Energy 38 9343
    [11]
    Chikada T et al 2013 Fusion Eng. Des. 88 640
    [12]
    Lee T et al 2014 Macromol. Res. 22 1190
    [13]
    Liu S et al 2010 Fusion Eng. Des. 85 1401
    [14]
    Lackner J, Major L and Kot M 2011 Bull. Pol. Acad. Sci. Tech. Sci. 59 343
    [15]
    Clyne T W and Jones F R 2001 Encyclopedia of Materials Science and Technology 2nd edn (Oxford: Elsevier)
    [16]
    Freund L B and Suresh S 2004 Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge: Cambridge University Press)
    [17]
    Teixeira V 2001 Thin Solid Films 392 276
    [18]
    Wiklund U, Gunnars J and Hogmark S 1999 Wear 232 262
    [19]
    Haider J et al 2005 J. Mater. Process. Technol. 168 36
    [20]
    Lu T Q, Zhang W X and Wang T J 2011 Int. J. Eng. Sci. 49 967
    [21]
    Wang T J 1994 Eng. Fract. Mech. 48 217
    [22]
    Nibennaoune Z et al 2010 Thin Solid Films 518 3260
    [23]
    Bemporad E et al 2007 Surf. Coat. Technol. 201 7652
    [24]
    Zhang X C et al 2006 Mater. Des. 27 308
    [25]
    Zhu D H and Chen J J 2014 J. Nucl. Mater. 455 185
    [26]
    Toparli M et al 2007 J. Mater. Process. Technol. 190 26
    [27]
    Tsui Y C and Clyne T W 1997 Thin Solid Films 306 23
    [28]
    Stoney G G 1909 Proc. R. Soc. Lond. Ser. A 82 172
    [29]
    Wu Y P et al 2014 Appl. Surf. Sci. 307 615
    [30]
    Liu H B et al 2009 Mater. Des. 30 2785
    [31]
    Guo H X et al 2014 Res. Progr. Solid State Electron. 34 492 (in Chinese)
    [32]
    Grujicic M and Zhao H 1998 Mater. Sci. Eng. A 252 117
    [33]
    Grimvall G 1999 Thermophysical Properties of Materials (New York: Elsevier)
    [34]
    ZhangWX,FanXLandWangT J2011 Appl. Surf. Sci. 258 811
    [35]
    Donnet C and Erdemir A 2008 Tribology of Diamond-Like Carbon Films (New York: Springer)
    [36]
    Chawla V, Jayaganthan R and Chandra R 2008 J. Mater. Process. Technol. 200 205
    [37]
    Wei C H, Yang J F and Tai F C 2010 Diamond Relat. Mater. 19 518
    [38]
    Ohring M 2001 Materials Science of Thin Films (New York: Academic)
    [39]
    Men?ík J 2013 Mechanics of Components with Treated or Coated Surfaces (Netherlands: Springer)
    [40]
    Teixeira V et al 1999 J. Mater. Process. Technol. 92–93 209
    [41]
    Mimaroglu A, Kocabicak U and Genc S 1997 Mater. Des. 18 77
  • Related Articles

    [1]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [2]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [3]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [4]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [5]LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08
    [6]LIU Xin (刘欣), LI Shengli (李胜利), LI Mingshu (李铭书). Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer[J]. Plasma Science and Technology, 2013, 15(12): 1215-1220. DOI: 10.1088/1009-0630/15/12/10
    [7]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [8]Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21
    [9]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
    [10]B. F. MOHAMED, A. M. GOUDA. Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide[J]. Plasma Science and Technology, 2011, 13(3): 357-361.
  • Cited by

    Periodical cited type(18)

    1. Alrowaily, A.W., Khalid, M., Kabir, A. et al. On the electrostatic solitary waves in an electron–positron–ion plasma with Cairns–Tsallis distributed electrons. Rendiconti Lincei, 2025. DOI:10.1007/s12210-025-01304-w
    2. Khalid, M., Ata-ur-Rahman, Minhas, R., Alotaibi, B.M. et al. High-Frequency Electrostatic Cnoidal Waves in Unmagnetized Plasma. Brazilian Journal of Physics, 2024, 54(1): 20. DOI:10.1007/s13538-023-01369-8
    3. El-Nabulsi, R.A.. A Fractional Model to Study Soliton in Presence of Charged Space Debris at Low-Earth Orbital Plasma Region. IEEE Transactions on Plasma Science, 2024, 52(9): 4671-4693. DOI:10.1109/TPS.2024.3463178
    4. Nazziwa, L., Habumugisha, I., Jurua, E. Obliquely nonlinear solitary waves in magnetized electron–positron–ion plasma. Indian Journal of Physics, 2024. DOI:10.1007/s12648-024-03329-7
    5. Hammad, M.A., Khalid, M., Alrowaily, A.W. et al. Ion-acoustic cnoidal waves in a non-Maxwellian plasma with regularized κ-distributed electrons. AIP Advances, 2023, 13(10): 105127. DOI:10.1063/5.0172991
    6. Khalid, M., Kabir, A., Jan, S.U. et al. Coexistence of Compressive and Rarefactive Positron-Acoustic Electrostatic Excitations in Unmagnetized Plasma with Kaniadakis Distributed Electrons and Hot Positrons. Brazilian Journal of Physics, 2023, 53(3): 66. DOI:10.1007/s13538-023-01266-0
    7. Khalid, M., Kabir, A., Jan, L.S. Qualitative analysis of nonlinear electrostatic excitations in magnetoplasma with pressure anisotropy. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2023, 78(4): 339-345. DOI:10.1515/zna-2022-0312
    8. Khalid, M., Elghmaz, E.A., Shamshad, L. Periodic Waves in Unmagnetized Nonthermal Dusty Plasma with Cairns Distribution. Brazilian Journal of Physics, 2023, 53(1): 2. DOI:10.1007/s13538-022-01209-1
    9. Alyousef, H.A., Khalid, M., Ata-ur-Rahman, El-Tantawy, S.A. Large Amplitude Electrostatic (Un)modulated Excitations in Anisotropic Magnetoplasmas: Solitons and Freak Waves. Brazilian Journal of Physics, 2022, 52(6): 202. DOI:10.1007/s13538-022-01199-0
    10. Alyousef, H.A., Khalid, M., Kabir, A. Nonlinear periodic structures in magnetoplasma with nonthermal electrons and positrons. EPL, 2022, 139(5): 53002. DOI:10.1209/0295-5075/ac882c
    11. Khalid, M., Naeem, S.N., Irshad, M. et al. Nonlinear Periodic Structures in Fully Relativistic Degenerate Plasma. Brazilian Journal of Physics, 2022, 52(4): 140. DOI:10.1007/s13538-022-01130-7
    12. Khalid, M., Khan, M., Ata-ur-Rahman, Kabir, A. et al. Nonlinear Periodic Structures in Nonthermal Magnetoplasma with the Presence of Pressure Anisotropy. Brazilian Journal of Physics, 2022, 52(4): 109. DOI:10.1007/s13538-022-01100-z
    13. Khalid, M., Ullah, A., Kabir, A. et al. Oblique propagation of ion-acoustic solitary waves in magnetized electron-positron-ion plasma with Cairns distribution. EPL, 2022, 138(6): 63001. DOI:10.1209/0295-5075/ac765c
    14. Khalid, M., Kabir, A., Irshad, M. Ion-scale solitary waves in magnetoplasma with non-thermal electrons. EPL, 2022, 138(5): 53002. DOI:10.1209/0295-5075/ac668e
    15. Khalid, M., Khan, M., Rahman, A. et al. Nonlinear periodic structures in a magnetized plasma with Cairns distributed electrons. Indian Journal of Physics, 2022, 96(6): 1783-1790. DOI:10.1007/s12648-021-02108-y
    16. Mehdipoor, M., Asri, M. Physical aspects of cnoidal waves in non-thermal electron-beam plasma systems. Physica Scripta, 2022, 97(3): 035602. DOI:10.1088/1402-4896/ac5487
    17. Khalid, M., Khan, M., Ur-Rahman, A. et al. Ion acoustic solitary waves in magnetized anisotropic nonextensive plasmas. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77(2): 125-130. DOI:10.1515/zna-2021-0262
    18. Khalid, M., Khan, M., Muddusir, Ata-Ur-Rahman, Irshad, M. Periodic and localized structures in dusty plasma with Kaniadakis distribution. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76(10): 891-897. DOI:10.1515/zna-2021-0164

    Other cited types(0)

Catalog

    Article views (275) PDF downloads (524) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return