Advanced Search+
LIU (刘泽), Guogang YU (余国刚), Anping HE (何安平), Ling WANG (王玲). Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis[J]. Plasma Science and Technology, 2017, 19(9): 95602-095602. DOI: 10.1088/2058-6272/aa719d
Citation: LIU (刘泽), Guogang YU (余国刚), Anping HE (何安平), Ling WANG (王玲). Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis[J]. Plasma Science and Technology, 2017, 19(9): 95602-095602. DOI: 10.1088/2058-6272/aa719d

Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis

More Information
  • Received Date: March 09, 2017
  • The physical vapor deposition method is an effective way to deposit AI2O3 and Er2O3 on 316L stainless steel substrates acting as tritium permeation barriers in a fusion reactor. The distribution of residual thermal stress is calculated both in Al2O3 and Er2O3 coating systems with planar and rough substrates using finite element analysis. The parameters influencing the thermal stress in the sputter process are analyzed, such as coating and substrate properties, temperature and Young’s modulus. This work shows that the thermal stress in AI2O3 and Er2O3 coating systems exhibit a linear relationship with substrate thickness, temperature and Young’s modulus. However, this relationship is inversed with coating thickness. In addition, the rough substrate surface can increase the thermal stress in the process of coating deposition. The adhesive strength between the coating and the substrate is evaluated by the shear stress. Due to the higher compressive shear stress, the AI2O3 coating has a better adhesive strength with a 316L stainless steel substrate than the Er2O3 coating. Furthermore, the analysis shows that it is a useful way to improve adhesive strength with increasing interface roughness.
  • [1]
    Yang F L et al 2016 J. Nucl. Mater. 478 144
    [2]
    Wong C P C et al 2008 Fusion Eng. Des. 83 850
    [3]
    Wu Y Y et al 2015 Fusion Eng. Des. 90 105
    [4]
    ?panková M et al 2005 Mater. Sci. Eng. B 116 30
    [5]
    Nakamichi M, Kawamura H and Teratani T 2001 J. Nucl. Sci. Technol. 38 1007
    [6]
    Perujo A et al 2000 J. Nucl. Mater. 283–287 1292
    [7]
    Nagura M et al 2011 J. Nucl. Mater. 417 1210
    [8]
    Chikada T et al 2010 Fusion Eng. Des. 85 1537
    [9]
    Zeng Y et al 2010 J. Electroanal. Chem. 649 277
    [10]
    He D et al 2013 Int. J. Hydrogen Energy 38 9343
    [11]
    Chikada T et al 2013 Fusion Eng. Des. 88 640
    [12]
    Lee T et al 2014 Macromol. Res. 22 1190
    [13]
    Liu S et al 2010 Fusion Eng. Des. 85 1401
    [14]
    Lackner J, Major L and Kot M 2011 Bull. Pol. Acad. Sci. Tech. Sci. 59 343
    [15]
    Clyne T W and Jones F R 2001 Encyclopedia of Materials Science and Technology 2nd edn (Oxford: Elsevier)
    [16]
    Freund L B and Suresh S 2004 Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge: Cambridge University Press)
    [17]
    Teixeira V 2001 Thin Solid Films 392 276
    [18]
    Wiklund U, Gunnars J and Hogmark S 1999 Wear 232 262
    [19]
    Haider J et al 2005 J. Mater. Process. Technol. 168 36
    [20]
    Lu T Q, Zhang W X and Wang T J 2011 Int. J. Eng. Sci. 49 967
    [21]
    Wang T J 1994 Eng. Fract. Mech. 48 217
    [22]
    Nibennaoune Z et al 2010 Thin Solid Films 518 3260
    [23]
    Bemporad E et al 2007 Surf. Coat. Technol. 201 7652
    [24]
    Zhang X C et al 2006 Mater. Des. 27 308
    [25]
    Zhu D H and Chen J J 2014 J. Nucl. Mater. 455 185
    [26]
    Toparli M et al 2007 J. Mater. Process. Technol. 190 26
    [27]
    Tsui Y C and Clyne T W 1997 Thin Solid Films 306 23
    [28]
    Stoney G G 1909 Proc. R. Soc. Lond. Ser. A 82 172
    [29]
    Wu Y P et al 2014 Appl. Surf. Sci. 307 615
    [30]
    Liu H B et al 2009 Mater. Des. 30 2785
    [31]
    Guo H X et al 2014 Res. Progr. Solid State Electron. 34 492 (in Chinese)
    [32]
    Grujicic M and Zhao H 1998 Mater. Sci. Eng. A 252 117
    [33]
    Grimvall G 1999 Thermophysical Properties of Materials (New York: Elsevier)
    [34]
    ZhangWX,FanXLandWangT J2011 Appl. Surf. Sci. 258 811
    [35]
    Donnet C and Erdemir A 2008 Tribology of Diamond-Like Carbon Films (New York: Springer)
    [36]
    Chawla V, Jayaganthan R and Chandra R 2008 J. Mater. Process. Technol. 200 205
    [37]
    Wei C H, Yang J F and Tai F C 2010 Diamond Relat. Mater. 19 518
    [38]
    Ohring M 2001 Materials Science of Thin Films (New York: Academic)
    [39]
    Men?ík J 2013 Mechanics of Components with Treated or Coated Surfaces (Netherlands: Springer)
    [40]
    Teixeira V et al 1999 J. Mater. Process. Technol. 92–93 209
    [41]
    Mimaroglu A, Kocabicak U and Genc S 1997 Mater. Des. 18 77
  • Related Articles

    [1]Haiying WEI (魏海英), Hongge GUO (郭红革), Lijun SANG (桑利军), Xingcun LI (李兴存), Qiang CHEN (陈强). Study on deposition of Al2O3 films by plasma-assisted atomic layer with different plasma sources[J]. Plasma Science and Technology, 2018, 20(6): 65508-065508. DOI: 10.1088/2058-6272/aaacc7
    [2]HAN Le(韩乐), CHANG Haiping(常海萍), ZHANG Jingyang(张镜洋), LIU Nan(刘楠), XU Tiejun(许铁军). The Effects of Nonuniform Thermal Boundary Condition on Thermal Stress Calculation of Water-Cooled W/Cu Divertor[J]. Plasma Science and Technology, 2014, 16(10): 988-994. DOI: 10.1088/1009-0630/16/10/16
    [3]XIN Qing (辛青), ZHANG Yi (张轶), WU Kaibin (巫开斌). Degradation of Microcystin-LR by Gas-Liquid Interfacial Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(12): 1221-1225. DOI: 10.1088/1009-0630/15/12/11
    [4]CEN Yishun (岑义顺), LI Qiang (李强), DING Yonghua (丁永华), CAI Lijun (蔡立君), et al.. Stress and Thermal Analysis of the In-Vessel RMP Coils in HL-2M[J]. Plasma Science and Technology, 2013, 15(9): 939-944. DOI: 10.1088/1009-0630/15/9/20
    [5]LEI Mingzhun (雷明准), SONG Yuntao (宋云涛), WANG Songke (王松可), WANG Xianwei (汪献伟). Electromagnetic and Stress Analyses of the ITER Equatorial Thermal Shield[J]. Plasma Science and Technology, 2013, 15(8): 830-833. DOI: 10.1088/1009-0630/15/8/22
    [6]LEI Mingzhun (雷明准), SONG Yuntao (宋云涛), DU Shijun (杜世俊), YE Minyou (叶民友), XI Weibin(奚维斌), LIU Xufeng (刘旭峰), LIU Chen (刘辰). Preliminary Thermal Mechanical Analysis of the Equatorial Thermal Shield for ITER[J]. Plasma Science and Technology, 2012, 14(10): 932-635. DOI: 10.1088/1009-0630/14/10/14
    [7]ZHU Dahuan (朱大焕), WANG Kun (王坤), WANG Xianping (王先平), CHEN Junling (陈俊凌), FANG Qianfeng (方前锋). Analysis of residual thermal stress in CVD-W coating as plasma facing material[J]. Plasma Science and Technology, 2012, 14(7): 656-660. DOI: 10.1088/1009-0630/14/7/20
    [8]LIU bo (刘波), YANG JiJun (杨吉军), JIAO Guohua (焦国华), XU KeWei (徐可为). Improvement of Interfacial Adhesion Strength and Thermal Stability of Cu/p-SiC:H/SiOC:H Film Stack by Plasma Treatment on the Surface of Cu Film[J]. Plasma Science and Technology, 2012, 14(7): 619-623. DOI: 10.1088/1009-0630/14/7/12
    [9]LEI Wenwen(雷雯雯), LI Xingcun(李兴存), CHEN Qiang (陈强), WANG Zhengduo(王正铎). Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic[J]. Plasma Science and Technology, 2012, 14(2): 129-133. DOI: 10.1088/1009-0630/14/2/09
    [10]LIU Gu, WANG Liuying, CHEN Guiming, HUA Shaochun, ZHU Erlei. Effect of Spraying Parameters on the Microstructure and Mechanical Properties of Micro-Plasma Sprayed Alumina-Titania Coatings[J]. Plasma Science and Technology, 2011, 13(4): 474-479.

Catalog

    Article views (275) PDF downloads (524) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return