Advanced Search+
Nader MORSHEDIAN. Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)[J]. Plasma Science and Technology, 2017, 19(9): 95501-095501. DOI: 10.1088/2058-6272/aa74c5
Citation: Nader MORSHEDIAN. Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)[J]. Plasma Science and Technology, 2017, 19(9): 95501-095501. DOI: 10.1088/2058-6272/aa74c5

Specifications of nanosecond laser ablation with solid targets, aluminum, silicon rubber, and polymethylmethacrylate (PMMA)

More Information
  • Received Date: March 26, 2017
  • The ablation parameters such as threshold fluence, etch depth, ablation rate and the effect of material targets were investigated under the interaction of laser pulse with low intensity. The parameters of the laser system are: laser pulse energy in the range of 110–140 mJ, wavelength 1064 nm and pulse duration 20 ns. By macroscopic estimation of the outward images of the ablation and data obtained, we can conclude that the photothermal and photoionization processes have more influence for aluminum ablation. In contrast, for polymer samples, from the macroscopic observation of the border pattern at the irradiated spot, and also the data obtained from the experiment results, we deduce that both chemical change due to heating and photochemical dissociation were effective mechanisms of ablation. However, concerning the two polymer samples, apart from considering the same theoretical ablation model, it is conceived that the photomehanical specifications of PMMA are involved in the ablation parameters. The threshold fluence for an ablation rate of 30 laser shots were obtained as 12.4, 24.64, and 11.71 J cm-2, for aluminum, silicon rubber and polymethylmethacrylate (PMMA) respectively. The ablation rate is exponentially decreased by the laser-shot number, especially for aluminum. Furthermore, the etch depth after 30 laser shots was measured as 180, 630 and 870 μm, for aluminum, silicon rubber and PMMA, respectively.
  • [1]
    Gamaly E G et al 1999 J. Appl. Phys. 85 4213
    [2]
    Perry M D et al 1999 J. Appl. Phys. 85 6803
    [3]
    Gamaly E G et al 2002 Phys. Plasmas 9 949
    [4]
    Burnett K, Reed V C and Knight P L 1993 J. Phys. B: At. Mol. Opt. Phys. 26 561
    [5]
    Torrisi L et al 2006 Appl. Surf. Sci. 252 6383
    [6]
    Gammino S et al 2004 J. Appl. Phys. 96 2961
    [7]
    Bartnik A et al 2009 Appl. Phys. B 96 727
    [8]
    Torrisi L, Borrielli A and Margarone D 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 225 373
    [9]
    Chichkov B N et al 1996 Appl. Phys. A 63 109
    [10]
    Stafe M, Negutu C and Popescu I M 2006 J. Optoelectron. Adv. Mater. 8 1180
    [11]
    Von Allmen M 1987 Laser-Beam Interactions with Materials (Heidelberg: Springer)
    [12]
    Bogaerts A et al 2003 Spectrochim. Acta Part B 58 1867
    [13]
    B?uerle D 2000 Laser Processing and Chemistry 3rd edn (Berlin: Springer)
    [14]
    Amoruso S et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R131
    [15]
    Lide D R 1992 Hand Book of Chemistry and Physics (London: CRC)
    [16]
    Timm R, Willmott P R and Huber J R 1996 J. Appl. Phys. 80 1794
    [17]
    Gilgenbach R M and Ventzeck P L G 1991 Appl. Phys. Lett. 58 1597
    [18]
    Mao X L and Russo R E 1996 Appl. Phys. A 64 1
    [19]
    Bityurin N et al 2003 Chem. Rev. 103 519
    [20]
    Vitiello M et al 2005 Appl. Surf. Sci. 248 163
    [21]
    Baudach S et al 2000 Appl. Surf. Sci. 154–155 555
    [22]
    AZO Materials www.azom.com/properties.aspx? ArticleID = 920
    [23]
    Material Property Database www.mit.edu/~6.777/matprops/ pmma.htm
    [24]
    Srinivasan R et al 1986 Macromolecules 19 916
    [25]
    Plexiglas www.plexiglas.com/export/K/plexiglas-optical?and-transmission-characteristics.pdf
  • Related Articles

    [1]Na LI, Edward HAREFA, Weidong ZHOU. Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(11): 115507. DOI: 10.1088/2058-6272/ac8039
    [2]Qiang LIU (刘强), Qi MIN (敏琦), Maogen SU (苏茂根), Xingbang LIU (刘兴邦), Shiquan CAO (曹世权), Duixiong SUN (孙对兄), Chenzhong DONG (董晨钟), Yanbiao FU (符彦飙). Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state[J]. Plasma Science and Technology, 2021, 23(12): 125001. DOI: 10.1088/2058-6272/ac2815
    [3]A M EL SHERBINI, M M HAGRASS, M R M RIZK, E A EL-BADAWY. Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths[J]. Plasma Science and Technology, 2019, 21(1): 15502-015502. DOI: 10.1088/2058-6272/aadf7e
    [4]Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661
    [5]Jing QI (齐婧), Siqi ZHANG (张思齐), Tian LIANG (梁田), Ke XIAO (肖珂), Weichong TANG (汤伟冲), Zhiyuan ZHENG (郑志远). Ablation characteristics of carbon-doped glycerol irradiated by a 1064 nm nanosecond pulse laser[J]. Plasma Science and Technology, 2018, 20(3): 35508-035508. DOI: 10.1088/2058-6272/aa9faa
    [6]Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0
    [7]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [8]ZHANG Junmin (张俊民), LU Chunrong (卢春荣), GUAN Yonggang (关永刚), LIU Weidong (刘卫东). Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 506-511. DOI: 10.1088/1009-0630/18/5/11
    [9]ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
    [10]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02

Catalog

    Article views (295) PDF downloads (780) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return