Advanced Search+
Zhenling ZHAO (赵朕领), Yilun ZHU (朱逸伦), Li TONG (仝丽), Jinlin XIE (谢锦林), Wandong LIU (刘万东), Changxuan YU (俞昌旋), Zhoujun YANG (杨州军), Ge ZHUANG (庄革), N C LUHMANN JR, C W DOMIER. Quasi-3D electron cyclotron emission imaging on J-TEXT[J]. Plasma Science and Technology, 2017, 19(9): 94001-094001. DOI: 10.1088/2058-6272/aa750d
Citation: Zhenling ZHAO (赵朕领), Yilun ZHU (朱逸伦), Li TONG (仝丽), Jinlin XIE (谢锦林), Wandong LIU (刘万东), Changxuan YU (俞昌旋), Zhoujun YANG (杨州军), Ge ZHUANG (庄革), N C LUHMANN JR, C W DOMIER. Quasi-3D electron cyclotron emission imaging on J-TEXT[J]. Plasma Science and Technology, 2017, 19(9): 94001-094001. DOI: 10.1088/2058-6272/aa750d
  • Electron cyclotron emission imaging (ECEI) can provide measurements of 2D electron temperature fuctuation with high temporal and spatial resolution in magnetic fusion plasma devices. Two ECEI systems located in different toroidal ports with 67.5 degree separation have been implemented on J-TEXT to study the 3D structure of magnetohydrodynamic (MHD) instabilities. Each system consists of 12 (vertical) × 16 (horizontal) = 192 channels and the image of the 2nd harmonic X-mode electron cyclotron emission can be captured continuously in the core plasma region. The feld curvature adjustment lens concept is developed to control the imaging plane for receiving optics of the ECEI systems. Field curvature of the image can be controlled to match the emission layer. Consequently, a quasi-3D image of the MHD instability in the core of the plasma has been achieved.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return