Advanced Search+
Yong LU (卢勇), Lijun CAI (蔡立君), Yuxiang LIU (刘雨祥), Jian LIU (刘健), Yinglong YUAN (袁应龙), Guoyao ZHENG (郑国尧), Dequan LIU (刘德权). Thermal-hydraulic analysis of the HL-2M divertor using an homogeneous equilibrium model[J]. Plasma Science and Technology, 2017, 19(9): 95601-095601. DOI: 10.1088/2058-6272/aa7628
Citation: Yong LU (卢勇), Lijun CAI (蔡立君), Yuxiang LIU (刘雨祥), Jian LIU (刘健), Yinglong YUAN (袁应龙), Guoyao ZHENG (郑国尧), Dequan LIU (刘德权). Thermal-hydraulic analysis of the HL-2M divertor using an homogeneous equilibrium model[J]. Plasma Science and Technology, 2017, 19(9): 95601-095601. DOI: 10.1088/2058-6272/aa7628

Thermal-hydraulic analysis of the HL-2M divertor using an homogeneous equilibrium model

Funds: The authors also gratefully acknowledge the National Magnetic Confinement Fusion Science Program of China (No. 2015GB105002).
More Information
  • Received Date: February 27, 2017
  • The heat flux of the HL-2M divertor would reach 10 MW m-2 or more at the local area when the device operates at high parameters. Subcooled boiling could occur at high thermal load, which would be simulated based on the homogeneous equilibrium model. The results show that the current design of the HL-2M divertor could withstand the local heat flux 10 MW m-2 at a plasma pulse duration of 5 s, inlet coolant pressure of 1.5 MPa and flow velocity of 4 m s-1. The pulse duration that the HL-2M divertor could withstand is closely related to the coolant velocity. In addition, at the time of 2 min after plasma discharge, the flow velocity decreased from 4 m s-1 to 1m s-1, and the divertor could also be cooled to the initial temperature before the next plasma discharge commences.
  • [1]
    Jiang J et al 2006 Nucl. Fusion Plasma Phys. 26 22 (in Chinese)
    [2]
    Cheng X M et al 2015 Plasma Sci. Technol. 17 787
    [3]
    Chen P M et al 2015 J. Fusion Energy 34 901
    [4]
    Rader J D et al 2011 Fusion Sci. Technol. 60 223
    [5]
    Crosatti L et al 2007 Fusion Sci. Technol. 52 531
    [6]
    Li Q 2015 Fusion Eng. Des. 96–97 338
    [7]
    Liu D Q et al 2015 Fusion Eng. Des. 96–97 298
    [8]
    ANSYS 2012 ANSYS Fluent User’s Manual (Canonsburg, PA: ANSYS Inc)
    [9]
    Boyed R D et al 2004 Int. J. Heat Mass Transfer 47 2183
    [10]
    Boyd R D and Zhang H T 2006 Int. J. Heat Mass Transfer 49 1320
    [11]
    ITER Material Properties Handbook, ITER Document No. G74 MA8 (2004)
    [12]
    Zinkle S J and Ghoniem N M 2000 Fusion Eng. Des. 51–52 55
  • Related Articles

    [1]Shuling XU (徐淑玲), Mingzhun LEI (雷明准), Sumei LIU (刘素梅), Kun LU (陆坤), Kun XU (徐坤), Kun PEI (裴坤). Neutronic investigation and activation calculation for CFETR HCCB blankets[J]. Plasma Science and Technology, 2017, 19(12): 125603. DOI: 10.1088/2058-6272/aa8bfe
    [2]Xiaokang ZHANG (张小康), Songlin LIU (刘松林), Xia LI (李夏), Qingjun ZHU (祝庆军), Jia LI (李佳). Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR[J]. Plasma Science and Technology, 2017, 19(11): 115602. DOI: 10.1088/2058-6272/aa808b
    [3]ZHU Qingjun (祝庆军), LI Jia (李佳), LIU Songlin (刘松林). Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(7): 775-780. DOI: 10.1088/1009-0630/18/7/13
    [4]LI Jia (李佳), ZHANG Xiaokang (张小康), GAO Fangfang (高芳芳), PU Yong (蒲勇). Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(2): 179-183. DOI: 10.1088/1009-0630/18/2/14
    [5]DU Hongfei (杜红飞), CHEN Dehong (陈德鸿), DUAN Wenxue (段文学), JIANG Jieqiong (蒋洁琼), WU Yican (吴宜灿), FDS Team. Physics Analysis and Optimization Studies for a Fusion Neutron Source Based on a Gas Dynamic Trap[J]. Plasma Science and Technology, 2014, 16(12): 1153-1157. DOI: 10.1088/1009-0630/16/12/12
    [6]LU Quankang(陆全康), ZHOU Hsiao-Ling. Gravitational Effects on Plasma Waves in Environment of Sun and Neutron Star[J]. Plasma Science and Technology, 2014, 16(8): 738-748. DOI: 10.1088/1009-0630/16/8/04
    [7]YUAN Guoliang(袁国梁), YANG Qingwei(杨青巍), YANG Jinwei(杨进蔚), SONG Xianying(宋先瑛), LI Xu(李旭), WU Huajian(吴华剑), WANG Zhiqiang(王志强). Fusion Neutron Flux Detector for the ITER[J]. Plasma Science and Technology, 2014, 16(2): 168-171. DOI: 10.1088/1009-0630/16/2/14
    [8]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), YUAN Guoliang (袁国梁), YANG Qingwei (杨青巍), YIN Zejie (阴泽杰). The Neutron-Gamma Pulse Shape Discrimination Method for Neutron Flux Detection in the ITER[J]. Plasma Science and Technology, 2013, 15(5): 417-419. DOI: 10.1088/1009-0630/15/5/04
    [9]XIE Xufei (谢旭飞), YUAN Xi(袁熙), ZHANG Xing (张兴), FAN Tieshuan (樊铁栓), HEN Jinxiang(陈金象), LI Xiangqing(李湘庆). Calibration and Unfolding of the Pulse Height Spectra of Liquid Scintillator-Based Neutron Detectors using Photon Sources[J]. Plasma Science and Technology, 2012, 14(6): 553-557. DOI: 10.1088/1009-0630/14/6/27
    [10]XU Yan (许妍), LIU Guangzhou(刘广洲), WU Yaorui(吴姚睿), ZHU Mingfeng(朱明枫), YU Zi(喻孜), WANG Hongyan(王红岩), ZHAO Enguang(赵恩广). The Effects of δ Meson on the Neutron Star Cooling[J]. Plasma Science and Technology, 2012, 14(5): 375-378. DOI: 10.1088/1009-0630/14/5/06

Catalog

    Article views (360) PDF downloads (622) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return