Advanced Search+
Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766
Citation: Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766

Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers

Funds: This work is supported by National Natural Science Foundation of China (Grant Nos. 51377014, 51407022 and 51677019), and the National Key Research and Development program of China (2016YFC0207200).
More Information
  • Received Date: June 12, 2017
  • In this paper, a long line-shape dielectric barrier discharge excited by a nanosecond pulse and AC is generated in atmospheric air for the purpose of discussing the uniformity, stability and ability of aramid fiber treatment. The discharge images, waveforms of current and voltage, optical emission spectra, and gas temperatures of both discharges are compared. It is found that nanosecond pulsed discharge has a more uniform discharge morphology, higher energy efficiency and lower gas temperature, which indicates that nanosecond pulsed discharge is more suitable for surface modification. To reduce the water contact angle from 96° to about 60°, the energy cost is only about 1/7 compared with AC discharge. Scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy are employed to understand the mechanisms of hydrophilicity improvement.
  • [1]
    Fridman A, Chirokov A and Gutsol A 2005 J. Phys. D: Appl. Phys. 38 R1
    [2]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
    [3]
    Samanta K K et al 2012 Surf. Coat. Technol. 213 65
    [4]
    Morent R et al 2008 Surf. Coat. Technol. 202 3427
    [5]
    Zille A, Oliveira F R and Souto A P 2015 Plasma Process. Polym. 12 98
    [6]
    JiaC X et al 2011 Appl. Surf. Sci. 258 388
    [7]
    Samanta K K, Jassal M and Agrawal A K 2009 Surf. Coat. Technol. 203 1336
    [8]
    de Lange P J et al 2001 Composites A 32 331
    [9]
    García J M et al 2010 Prog. Polym. Sci. 35 623
    [10]
    Xi M et al 2008 Surf. Coat. Technol. 202 6029
    [11]
    Guikema J et al 2000 Phys. Rev. Lett. 85 3817
    [12]
    Pai D Z, Lacoste D A and Laux C O 2010 J. Appl. Phys. 107 093303
    [13]
    Liu C, Dobrynin D and Fridman A 2014 J. Phys. D: Appl. Phys. 47 252003
    [14]
    Duten X et al 2002 IEEE Trans. Plasma Sci. 30 178
    [15]
    Mizuno A, Clements J S and Davis R H 1986 IEEE Trans. Ind. Appl. IA-22 516
    [16]
    Golubovskii Y B et al 2003 J. Phys. D: Appl. Phys. 36 39
    [17]
    Shao T et al 2010 Appl. Surf. Sci. 256 3888
    [18]
    YangD Z et al 2013 EPL 102 65001
    [19]
    Dong B et al 2008 J. Phys. D: Appl. Phys. 41 155201
    [20]
    Williamson J M et al 2006 J. Phys. D: Appl. Phys. 39 4400
    [21]
    Liu S H and Neiger M 2001 J. Phys. D: Appl. Phys. 34 1632
    [22]
    Kozlov K V et al 2005 J. Phys. D: Appl. Phys. 38 518
    [23]
    Gherardi N et al 2000 Plasma Sources Sci. Technol. 9 340
    [24]
    Panousis E et al 2009 IEEE Trans. Dielectr. Electr. Insul. 16 734
    [25]
    Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125
    [26]
    Yu L et al 2001 Plasma Chem. Plasma Process. 21 483
    [27]
    Luo S Q, Denning C M and Scharer J E 2008 J. Appl. Phys. 104 013301
    [28]
    Staack D et al 2006 Plasma Sources Sci. Technol. 15 818
    [29]
    Vesel A et al 2010 Surf. Coat. Technol. 204 1503
    [30]
    Gotoh K et al 2012 Colloid Polym. Sci. 290 1005
    [31]
    Yang D Z et al 2012 Plasma Sources Sci. Technol. 21 035004
    [32]
    Zhang H P et al 2006 Polym. Degrad. Stab. 91 2761
    [33]
    Panar M et al 1983 J. Polym. Sci. Polym. Phys. Ed. 21 1955
    [34]
    Jia C X et al 2010 Surf. Coat. Technol. 204 3668
  • Related Articles

    [1]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [2]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Electrical characters and optical emission spectra of VBD coupled SBD excited by sine AC voltage in atmospheric air[J]. Plasma Science and Technology, 2017, 19(6): 64007-064007. DOI: 10.1088/2058-6272/aa6679
    [3]PENG Shi (彭释), LI Lingjun (李灵均), LI Wei (李炜), WANG Chaoliang (王超梁), GUO Ying (郭颖), SHI Jianjun (石建军), ZHANG Jing (张菁). Surface Modification of Polyimide Film by Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(4): 337-341. DOI: 10.1088/1009-0630/18/4/01
    [4]YANG Fuxiang (杨富翔), MU Zongxin (牟宗信), ZHANG Jialiang (张家良). Discharge Modes Suggested by Emission Spectra of Nitrogen Dielectric Barrier Discharge with Wire-Cylinder Electrodes[J]. Plasma Science and Technology, 2016, 18(1): 79-85. DOI: 10.1088/1009-0630/18/1/14
    [5]DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09
    [6]HU Qianqian (胡倩倩), XU Jinzhou (徐金洲), ZHOU Zhenxing (周振兴), ZHANG Jing (张菁). Surface Modifiation of PBO Fibers for Composites by Coaxial Atmospheric Dielectric Barrier Discharge (PLA-PLA)[J]. Plasma Science and Technology, 2013, 15(5): 429-434. DOI: 10.1088/1009-0630/15/5/07
    [7]WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07
    [8]DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644.
    [9]Vadim Yu. PLAKSIN, Oleksiy V. PENKOV, Min Kook KO, Heon Ju LEE. Exhaust Cleaning with Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2010, 12(6): 688-691.
    [10]Xu Jinzhou(徐金洲), Zhong Ping(钟平), Li Jialing(李嘉灵), Ling Jie (林捷), Diao Ying(刁颖), Zhang Jing(张菁). Characteristics of Coaxial Dielectric Barrier Discharge at an Atmospheric Pressure with a Swirling Gas Argon/Oxygen Mixture for the Surface Modification of Polyester Fiber Cord[J]. Plasma Science and Technology, 2010, 12(5): 601-607.

Catalog

    Article views (235) PDF downloads (540) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return