Advanced Search+
Wei LIU (刘伟), Chundong HU (胡纯栋), Sheng LIU (刘胜), Shihua SONG (宋士花), Jinxin WANG (汪金新), Yan WANG (王艳), Yuanzhe ZHAO (赵远哲), LizhenLIANG (梁立振). Development of data acquisition and over-current protection systems for a suppressor-grid current with a neutral-beam ion source[J]. Plasma Science and Technology, 2017, 19(12): 125605. DOI: 10.1088/2058-6272/aa8cc1
Citation: Wei LIU (刘伟), Chundong HU (胡纯栋), Sheng LIU (刘胜), Shihua SONG (宋士花), Jinxin WANG (汪金新), Yan WANG (王艳), Yuanzhe ZHAO (赵远哲), LizhenLIANG (梁立振). Development of data acquisition and over-current protection systems for a suppressor-grid current with a neutral-beam ion source[J]. Plasma Science and Technology, 2017, 19(12): 125605. DOI: 10.1088/2058-6272/aa8cc1

Development of data acquisition and over-current protection systems for a suppressor-grid current with a neutral-beam ion source

Funds: This work is supported by National Natural Science Foundation of China (No.11575240), Key Program of Research and Development of Hefei Science Center, CAS (grant 2016HSC-KPRD002).
More Information
  • Received Date: June 01, 2017
  • Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinement-fusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheating, a data acquisition and over-current protection system based on the PXI (PCI eXtensions for Instrumentation) platform has been developed. The system consists of a current sensor, data acquisition module and over-current protection module. In the data acquisition module, the acquired data of one shot will be transferred in isolation and saved in a data-storage server in a txt file. It can also be recalled using NBWave for future analysis. The over-current protection module contains two modes: remote and local. This gives it the function of setting a threshold voltage remotely and locally, and the forbidden time of over-current protection also can be set by a host PC in remote mode. Experimental results demonstrate that the data acquisition and over-current protection system has the advantages of setting forbidden time and isolation transmission.
  • [1]
    Chang D H et al 2011 Fusion Eng. Des. 86 244
    [2]
    Hu C D et al 2015 Plasma Sci. Technol. 17 817
    [3]
    Yahong X et al 2014 Plasma Sci. Technol. 16 429
    [4]
    Kraus W et al 2015 Fusion Eng. Des. 91 16
    [5]
    Kumar A et al 2016 Fusion Eng. Des. 112 865
    [6]
    Mehta S et al 2017 Opt. Switch. Netw. 23 52
    [7]
    Sardar B et al 2014 J. Netw. Comput. Appl. 41 89
    [8]
    Lar S-U and Liao X 2013 J. Netw. Comput. Appl. 36 126
    [9]
    Milecki A and Regulski R 2016 Mech. Syst. Signal Process. 78 43
    [10]
    Khorami A and Sharifkhani M 2016 AEü Int. J. Electron. C. 70 886
    [11]
    Azeemuddin S and Sayehb M R 2011 Optik 122 1935
    [12]
    Hugues J A et al 2011 Microelectron. J. 42 785
    [13]
    Hu C and NBI Team 2012 Plasma Sci. Technol. 14 567
    [14]
    Hu C 2015 Plasma Sci. Technol. 17 1
  • Related Articles

    [1]Chuang WANG (王闯), Xi CHEN (陈曦), Kai TANG (唐凯), Pengfei LI (李鹏斐). Study on the discharge mechanism and EM radiation characteristics of Trichel pulse discharge in air[J]. Plasma Science and Technology, 2019, 21(5): 55402-055402. DOI: 10.1088/2058-6272/ab03ab
    [2]Fanrong KONG (孔繁荣), Qiuyue NIE (聂秋月), Shu LIN (林澍), Zhibin WANG (王志斌), Bowen LI (李博文), Shulei ZHENG (郑树磊), Binhao JIANG (江滨浩). Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation[J]. Plasma Science and Technology, 2018, 20(1): 14017-014017. DOI: 10.1088/2058-6272/aa8f3e
    [3]Xiangyang LIU (刘向阳), Siyu WANG (王司宇), Yang ZHOU (周阳), Zhiwen WU (武志文), Kan XIE (谢侃), Ningfei WANG (王宁飞). Thermal radiation properties of PTFE plasma[J]. Plasma Science and Technology, 2017, 19(6): 64012-064012. DOI: 10.1088/2058-6272/aa65e8
    [4]LI Mei (李美), ZHANG Junpeng (张俊鹏), HU Yang (胡杨), ZHANG Hantian (张含天), WU Yifei (吴益飞). Simulation of Fault Arc Based on Different Radiation Models in a Closed Tank[J]. Plasma Science and Technology, 2016, 18(5): 549-553. DOI: 10.1088/1009-0630/18/5/18
    [5]DONG Yunsong (董云松), YANG Jiamin (杨家敏), SONG Tianming (宋天明), ZHU Tuo (朱托), HUANG Chengwu (黄成武). Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition[J]. Plasma Science and Technology, 2016, 18(4): 376-381. DOI: 10.1088/1009-0630/18/4/08
    [6]SONG Tianming (宋天明), YANG Jiamin (杨家敏), ZHU Tuo (朱托), LI Zhichao (李志超), HUANG Chengwu (黄成武). Continued Study on Hohlraum Radiation Source with Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2016, 18(4): 342-345. DOI: 10.1088/1009-0630/18/4/02
    [7]CHEN Lei (陈蕾), LIU Xiang (刘翔), LIAN Youyun (练友运), CAI Laizhong (才来中). Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept[J]. Plasma Science and Technology, 2015, 17(9): 792-796. DOI: 10.1088/1009-0630/17/9/12
    [8]YU Jianyang (俞建阳), CHEN Fu (陈浮), LIU Huaping (刘华坪), SONG Yanping (宋彦萍). Numerical Study of Fluid Dynamics and Heat Transfer Induced by Plasma Discharges[J]. Plasma Science and Technology, 2015, 17(1): 41-49. DOI: 10.1088/1009-0630/17/1/09
    [9]SONG Tianming (宋天明), YANG Jiamin (杨家敏), YANG Dong (杨冬), et al.. Experimental Study of the X-Ray Radiation Source at Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2013, 15(11): 1108-1111. DOI: 10.1088/1009-0630/15/11/06
    [10]G.Yu. YUSHKOV, K.P. SAVKIN, A.G. NIKOLAEV, E.M. OKS, A.V. VODOPYANOV, I.V. IZOTOV, D.A. MANSFELD. Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation[J]. Plasma Science and Technology, 2011, 13(5): 596-599.
  • Cited by

    Periodical cited type(14)

    1. Luo, Y., Shi, Y., Zhuang, K. et al. Study on the Evolution of Physicochemical Properties of Carbon Black at Different Regeneration Stages of Diesel Particulate Filters Regenerated by Non-Thermal Plasma. Processes, 2024, 12(6): 1113. DOI:10.3390/pr12061113
    2. Shi, Y., Zhou, Y., Li, Z. et al. Effect of Temperature-controlled conditions on the decomposition of particulate matter deposited in the diesel particulate filter channel by treatment with Non-thermal plasma. Fuel, 2023. DOI:10.1016/j.fuel.2023.128547
    3. Cai, Z., Yan, F., Hu, J. et al. Temperature characteristics of silicon carbide particulate filter during drop-to-idle regeneration applied to a diesel vehicle. Fuel, 2023. DOI:10.1016/j.fuel.2022.126921
    4. Ye, J., E, J., Peng, Q. Effects of porosity setting and multilayers of diesel particulate filter on the improvement of regeneration performance. Energy, 2023. DOI:10.1016/j.energy.2022.126063
    5. Yao, D., Hu, J., Zhang, B. et al. Research on dynamic modeling and carbon load estimation of diesel particulate filter. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45(4): 12165-12180. DOI:10.1080/15567036.2023.2269126
    6. Lu, Y., Shi, Y., Cai, Y. et al. Physicochemical Properties of Particulate Matter Deposited in DPF Channels During Regeneration by Non-Thermal Plasma | [NTP 再生 DPF 孔道内沉积颗粒物的理化特性]. Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines), 2023, 41(4): 307-314. DOI:10.16236/j.cnki.nrjxb.202304036
    7. Shi, Y., Zhou, Y., Li, Z. et al. Effect of temperature control conditions on DPF regeneration by nonthermal plasma. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134787
    8. Qiang, T.P., Peng, L.Y., De Yuan, W. et al. Effects of Catalyst Structural Parameters on the Performance of Exhaust Gas Aftertreatment System of Diesel Engines. International Journal of Automotive Technology, 2022, 23(4): 1085-1097. DOI:10.1007/s12239-022-0095-x
    9. Shi, Y., Lu, Y., Cai, Y. et al. Evolution of particulate matter deposited in the DPF channel during low-temperature regeneration by non-thermal plasma. Fuel, 2022. DOI:10.1016/j.fuel.2022.123552
    10. Dong, R., Zhang, Z., Ye, Y. et al. Review of Particle Filters for Internal Combustion Engines. Processes, 2022, 10(5): 993. DOI:10.3390/pr10050993
    11. Lu, Y., Shi, Y., Cai, Y. et al. Microcrystal Structure and C/O Element Occurrence State of Diesel PM by Non-Thermal Plasma Oxidation at Different Reaction Temperatures. International Journal of Automotive Technology, 2021, 22(6): 1711-1721. DOI:10.1007/s12239-021-0147-7
    12. Shi, Y., Lu, Y., Cai, Y. et al. Experimental study on the parameter optimization and application of a packed-bed dielectric barrier discharge reactor in diesel particulate filter regeneration. Plasma Science and Technology, 2021, 23(11): 115505. DOI:10.1088/2058-6272/ac1dfd
    13. Shi, Y., Lu, Y., Cai, Y. et al. Analysis of the microstructure and elemental occurrence state of residual ash-PM following DPF regeneration by injecting oxygen into non-thermal plasma. Plasma Science and Technology, 2021, 23(9): 095504. DOI:10.1088/2058-6272/ac1058
    14. Li, J., Lu, H., Wang, Q. et al. Enhanced removal of ultrafine particles from kerosene combustion using a dielectric barrier discharge reactor packed with porous alumina balls. Plasma Science and Technology, 2021, 23(7): 075505. DOI:10.1088/2058-6272/abffaa

    Other cited types(0)

Catalog

    Article views (251) PDF downloads (502) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return