Self-organized pattern on the surface of a metal anode in low-pressure DC discharge
-
Graphical Abstract
-
Abstract
Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a low-pressure test platform for 100–200 mm rod-plane gaps with a needle tip, conical tip and hemispherical tip within 1–10 kPa. The factors influencing the pattern profile are the pressure value, gap length and shape of the electrode, and a variety of pattern structures are observed by changing these factors. With increasing pressure, first the pattern diameter increases and then decreases. With the needle tip, layer structure, single-ring structure and double-ring structure are displayed successively with increasing pressure. With the conical tip, the ring-like structure gradually forms separate spots with increasing pressure. With the hemispherical tip, there are anode spots inside the ring structure. With the increase of gap length, the diameter of the self-organized pattern increases and the profile of the pattern changes. The development process of the pattern contains three key stages: pattern enlargement, pattern stabilization and pattern shrink.
-
-