Advanced Search+
Yuqing YANG (杨宇晴), Xinjun ZHANG (张新军), Yanping ZHAO (赵燕平), Chengming QIN (秦成明), Yan CHENG (程艳), Yuzhou MAO (毛玉周), Hua YANG (杨桦), Jianhua WANG (王健华), Shuai YUAN (袁帅), Lei WANG (王磊), Songqing JU (琚松青), Gen CHEN (陈根), Xu DENG, (邓旭), Kai ZHANG (张开), Baonian WAN (万宝年), Jiangang LI (李建刚), Yuntao SONG (宋云涛), Xianzu GONG (龚先祖), Jinping QIAN (钱金平), Tao ZHANG (张涛). Recent ICRF coupling experiments on EAST[J]. Plasma Science and Technology, 2018, 20(4): 45102-045102. DOI: 10.1088/2058-6272/aaa599
Citation: Yuqing YANG (杨宇晴), Xinjun ZHANG (张新军), Yanping ZHAO (赵燕平), Chengming QIN (秦成明), Yan CHENG (程艳), Yuzhou MAO (毛玉周), Hua YANG (杨桦), Jianhua WANG (王健华), Shuai YUAN (袁帅), Lei WANG (王磊), Songqing JU (琚松青), Gen CHEN (陈根), Xu DENG, (邓旭), Kai ZHANG (张开), Baonian WAN (万宝年), Jiangang LI (李建刚), Yuntao SONG (宋云涛), Xianzu GONG (龚先祖), Jinping QIAN (钱金平), Tao ZHANG (张涛). Recent ICRF coupling experiments on EAST[J]. Plasma Science and Technology, 2018, 20(4): 45102-045102. DOI: 10.1088/2058-6272/aaa599

Recent ICRF coupling experiments on EAST

Funds: This work was supported by: (1) National key Research and Development program (Grant Nos. 2016YFA0400600 and 2016YFA0400601); (2) National Magnetic Confinement Fusion Science Programme (Grant Nos. 2015GB101001 and 2013GB106001B); (3) National Natural Science Foundation of China under Grant Nos. 11375235, 11675213 and 11375236; and (4) JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC no. 11261140328).
More Information
  • Received Date: September 29, 2017
  • Recent ion cyclotron resonance frequency (ICRF) coupling experiments for optimizing ICRF heating in high power discharge were performed on EAST. The coupling experiments were focus on antenna phasing and gas puffing, which were performed separately on two ports of the ion cyclotron resonance heating (ICRH) system of EAST. The antenna phasing was performed on the I-port antenna, which consists of four toroidally spaced radiating straps operating in multiple phasing cases; the coupling performance was better under low wave number |k||| (ranging from 4.5 to 6.5). By fuelling the plasma from gas injectors, placed as uniformly spaced array from top to bottom at each side limiter of the B-port antenna, which works in dipole phasing, the coupling resistance of the B-port antenna increased obviously. Furthermore, the coupling resistance of the I-port antenna was insensitive to a smaller rate of gas puffing but when the gas injection rate was more than a certain value (>1021s-1), a sharp increase in the coupling resistance of the I-port antenna occurred, which was mainly caused by the toroidal asymmetric boundary density arising from gas puffing. A more specific analysis is given in the paper.
  • [1]
    Kazakov Y O et al 2012 Nucl. Fusion 52 094012
    [2]
    Faugel H et al 2014 AIP Conf. Proc. 1580 378
    [3]
    Colas L et al 2009 Fusion Sci. Technol. 56 1173
    [4]
    Zhang X J et al 2012 Nucl. Fusion 52 032002
    [5]
    Zhang X J et al 2011 Plasma Sci. Technol. 13 172
    [6]
    Jacquet P et al 2016 Nucl. Fusion 56 046001
    [7]
    Lerche E et al 2015 J. Nucl. Mater. 463 634
    [8]
    Zhang J H et al 2017 Nucl. Fusion 57 066030
    [9]
    Bilato R et al 2005 Nucl. Fusion 45 L5
    [10]
    Zhang W et al 2016 Nucl. Fusion 56 036007
    [11]
    Tsujii N et al 2014 AIP Conf. Proc. 1580 239
    [12]
    Faugel H et al 2011 Fusion Eng. Des. 86 996
    [13]
    Jacquet P et al 2012 Nucl. Fusion 52 042002
    [14]
    Stepanov I et al 2015 Nucl. Fusion 55 113003
    [15]
    Wang J H et al 2017 Fusion Eng. Des. 122 196
    [16]
    Yang X Q et al 2012 Fusion Eng. Des. 87 1249
    [17]
    QinCM et al 2015 Plasma Sci. Technol. 17 167
    [18]
    Lerche E et al 2009 AIP Conf. Proc. 1187 93
    [19]
    Zhang W et al 2017 Nucl. Fusion 57 056042
  • Related Articles

    [1]Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65
    [2]Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
    [3]Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203
    [4]Ernest GNAPOWSKI, Sebastian GNAPOWSKI, Jaros|aw PYTKA. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes[J]. Plasma Science and Technology, 2018, 20(8): 85505-085505. DOI: 10.1088/2058-6272/aac1b6
    [5]Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5
    [6]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [7]ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09
    [8]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [9]QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13
    [10]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
  • Cited by

    Periodical cited type(17)

    1. Mikeš, J., Pekárek, S., Hanuš, O. Combined effects of electrode geometry and airflow streamlines patterns on ozone production of a cylindrical dielectric barrier discharge. Electrochemistry Communications, 2025. DOI:10.1016/j.elecom.2025.107873
    2. Zhang, J., Zhu, M., Zhang, C. Dynamic of mode transition in air surface micro-discharge plasma: reactive species in confined space. Plasma Science and Technology, 2025, 27(1): 015402. DOI:10.1088/2058-6272/ad862c
    3. Ali, N.N., Alayan, H.M., AbdulRazak, A.A. et al. Modeling and optimizing phenol degradation in aqueous solution using post discharge DBD plasma treatment. Desalination and Water Treatment, 2025. DOI:10.1016/j.dwt.2025.100993
    4. Haosheng, J., Shiyun, L., Hengrui, L. et al. Discharge Characteristics of DBD with Contact Electrodes at Atmospheric Pressure in Quiescent Air. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-99-7405-4_28
    5. Giotis, K., Svarnas, P., Amanatides, E. et al. Ionization wave propagation and cathode sheath formation due to surface dielectric-barrier discharge sustained in pulsed mode. Plasma Science and Technology, 2023, 25(11): 115402. DOI:10.1088/2058-6272/acdb52
    6. Tański, M., Reza, A., Przytuła, D. et al. Ozone Generation by Surface Dielectric Barrier Discharge. Applied Sciences (Switzerland), 2023, 13(12): 7001. DOI:10.3390/app13127001
    7. Mikeš, J., Soukup, I., Pekárek, S. A 3D Numerical Study of the Surface Dielectric Barrier Discharge Initial Phase. Mathematics, 2023, 11(4): 1025. DOI:10.3390/math11041025
    8. Mikeš, J., Pekárek, S., Hanuš, O. Surface Dielectric Barrier Discharge in a Cylindrical Configuration–Effect of Airflow Orientation to the Microdischarges. Ozone: Science and Engineering, 2023, 45(1): 2-18. DOI:10.1080/01919512.2021.2016369
    9. Zhao, Q., Mao, B., Bai, X. et al. Experimental investigation of the discharge and thermal characteristics of an alternating current dielectric-barrier discharge plasma reactor. Applied Thermal Engineering, 2022. DOI:10.1016/j.applthermaleng.2022.119276
    10. Xu, H., Zhu, F., Liu, Y. et al. Effects of the ground-electrode temperature on the plasma physicochemical processes and biological inactivation functions involved in surface dielectric barrier discharge. Plasma Sources Science and Technology, 2022, 31(11): 115010. DOI:10.1088/1361-6595/ac9d63
    11. Huang, L., Guo, L., Qi, Y. et al. Bactericidal effect of surface plasma under different discharge modes. Physics of Plasmas, 2021, 28(12): 123501. DOI:10.1063/5.0068094
    12. ZENG, X., ZHANG, Y., GUO, L. et al. Ozone generation enhanced by silica catalyst in packed-bed DBD reactor. Plasma Science and Technology, 2021, 23(8): 085501. DOI:10.1088/2058-6272/ac0244
    13. Pekárek, S., Mikeš, J., Červenka, M. et al. Air Supply Mode Effects on Ozone Production of Surface Dielectric Barrier Discharge in a Cylindrical Configuration. Plasma Chemistry and Plasma Processing, 2021, 41(3): 779-792. DOI:10.1007/s11090-021-10154-x
    14. Xi, W., Wang, W., Liu, Z. et al. Mode transition of air surface micro-discharge and its effect on the water activation and antibacterial activity. Plasma Sources Science and Technology, 2020, 29(9): 095013. DOI:10.1088/1361-6595/aba7ef
    15. Homola, T., Prukner, V., Hoffer, P. et al. Multi-hollow surface dielectric barrier discharge: An ozone generator with flexible performance and supreme efficiency. Plasma Sources Science and Technology, 2020, 29(9): 095014. DOI:10.1088/1361-6595/aba987
    16. Yuan, D., Zhang, G., Ling, Z. et al. Characteristics of temperature distribution in atmospheric pulsed surface dielectric barrier discharge for ozone production. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109351
    17. Mikheyev, P.A., Demyanov, A.V., Kochetov, I.V. et al. Ozone and oxygen atoms production in a dielectric barrier discharge in pure oxygen and O2/CH4 mixtures. Modeling and experiment. Plasma Sources Science and Technology, 2020, 29(1): 015012. DOI:10.1088/1361-6595/ab5da3

    Other cited types(0)

Catalog

    Article views (251) PDF downloads (477) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return