Advanced Search+
Pengfei ZHANG (张鹏飞), Ling ZHANG (张凌), Zhenwei WU (吴振伟), Zong XU (许棕), Wei GAO (高伟), Liang WANG (王亮), Qingquan YANG (杨清泉), Jichan XU (许吉禅), Jianbin LIU (刘建斌), Hao QU (屈浩), Yong LIU (刘永), Juan HUANG (黄娟), Chengrui WU (吴成瑞), Yumei HOU (侯玉梅), Zhao JIN (金钊), J D ELDER, Houyang GUO (郭后扬). OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST[J]. Plasma Science and Technology, 2018, 20(4): 45104-045104. DOI: 10.1088/2058-6272/aaa7e8
Citation: Pengfei ZHANG (张鹏飞), Ling ZHANG (张凌), Zhenwei WU (吴振伟), Zong XU (许棕), Wei GAO (高伟), Liang WANG (王亮), Qingquan YANG (杨清泉), Jichan XU (许吉禅), Jianbin LIU (刘建斌), Hao QU (屈浩), Yong LIU (刘永), Juan HUANG (黄娟), Chengrui WU (吴成瑞), Yumei HOU (侯玉梅), Zhao JIN (金钊), J D ELDER, Houyang GUO (郭后扬). OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST[J]. Plasma Science and Technology, 2018, 20(4): 45104-045104. DOI: 10.1088/2058-6272/aaa7e8

OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST

Funds: This work was supported by the National Magnetic Confinement Fusion Science Program of China under Contract Nos. 2013GB107003, 2014GB124006, 2015GB101000, National Natural Science Foundation of China under Grant Nos. 11275231, 11422546, 11575236, 11575244 and 11405213, Scientific Research Grant of Hefei Science Center of CAS under contract 2015SRG-HSC001 and 2015SRG?HSC008, Magnetic Confinement Innovation Team Plan of Chinese Academy of Sciences, as well as the Thousand Talent Plan of China.
More Information
  • Received Date: August 15, 2017
  • Modeling with OEDGE was carried out to assess the initial and long-term plasma contamination efficiency of Ar puffing from different divertor locations, i.e. the inner divertor, the outer divertor and the dome, in the EAST superconducting tokamak for typical ohmic plasma conditions. It was found that the initial Ar contamination efficiency is dependent on the local plasma conditions at the different gas puff locations. However, it quickly approaches a similar steady state value for Ar recycling efficiency >0.9. OEDGE modeling shows that the final equilibrium Ar contamination efficiency is significantly lower for the more closed lower divertor than that for the upper divertor.
  • [1]
    ITER Physics Expert Group et al 1999 Nucl. Fusion 39 2391
    [2]
    Maddison G P et al 2003 Nucl. Fusion 43 49
    [3]
    Jackson G L et al 1999 J. Nucl. Mater. 266–269 380
    [4]
    Gruber O et al 1995 Phys. Rev. Lett. 74 4217
    [5]
    Chung T et al 2003 J. Nucl. Mater. 313–316 990
    [6]
    Wan B N et al 2015 Nucl. Fusion 55 104015
    [7]
    Li J et al 2013 Nat. Phys. 9 817
    [8]
    Stangeby P C et al 2003 J. Nucl. Mater. 313–316 883
    [9]
    Wu Z W et al 2011 J. Nucl. Mater. 415 S345
    [10]
    Wang D S et al 2011 Phys. Plasmas 18 032505
    [11]
    Xu J C et al 2016 Rev. Sci. Instrum. 87 083504
    [12]
    Xu Z et al 2016 Rev. Sci. Instrum. 87 11D429
    [13]
    Stangeby P C et al 1997 J. Nucl. Mater. 241–243 358
    [14]
    Fundamenski W, Stangeby P C and Elder J D 1999 J. Nucl. Mater. 266–269 1045
    [15]
    Reiter D 1992 J. Nucl. Mater. 196–198 80
    [16]
    Stangeby P C and Elder J D 1995 Nucl. Fusion 35 1391
    [17]
    Lao L L et al 1990 Nucl. Fusion 30 1035
    [18]
    Lisgo S 2013 Grid Generation with GRID. (Hefei: Institute of Plasma Physics, Chinese Academy of Sciences)
    [19]
    Summers H P 2004 The ADAS User Manual, Version 2.6 (http://adas.ac.uk)
    [20]
    Zhang P F et al 2016 Spectrosc. Spect. Anal. 36 2134 (in Chinese)
  • Related Articles

    [1]Gao ZHAO (赵高), Wanying ZHU (朱婉莹), Huihui WANG (王慧慧), Qiang CHEN (陈强), Chang TAN (谭畅), Jiting OUYANG (欧阳吉庭). Study of axial double layer in helicon plasma by optical emission spectroscopy and simple probe[J]. Plasma Science and Technology, 2018, 20(7): 75402-075402. DOI: 10.1088/2058-6272/aab4f1
    [2]Chenchen WU (吴辰宸), Xinfeng SUN (孙新锋), Zuo GU (顾左), Yanhui JIA (贾艳辉). Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 45502-045502. DOI: 10.1088/2058-6272/aaa8d9
    [3]Yi CHEN (陈毅), Fei YANG (杨飞), Hao SUN (孙昊), Yi WU (吴翊), Chunping NIU (纽春萍), Mingzhe RONG (荣命哲). Influence of the axial magnetic field on sheath development after current zero in a vacuum circuit breaker[J]. Plasma Science and Technology, 2017, 19(6): 64003-064003. DOI: 10.1088/2058-6272/aa65c8
    [4]QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
    [5]WANG Cheng (王城), CHEN Tang (陈瑭), LI Wanwan (李皖皖), ZHA Jun (査俊), XIA Weidong (夏维东). Axial Magnetic Field Effects on Xenon Short-Arc Lamps[J]. Plasma Science and Technology, 2014, 16(12): 1096-1099. DOI: 10.1088/1009-0630/16/12/03
    [6]Djelloul MENDIL, Hadj LAHMAR, Laifa BOUFENDI. Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe[J]. Plasma Science and Technology, 2014, 16(9): 837-842. DOI: 10.1088/1009-0630/16/9/06
    [7]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [8]WU Cheng (吴诚), PAN Wanjiang (潘皖江). Research and Analysis on Tensile and Compressive Fatigue Performance of Cryogenic Axial Insulation Breaks[J]. Plasma Science and Technology, 2013, 15(7): 716-720. DOI: 10.1088/1009-0630/15/7/20
    [9]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [10]JIA Shenli, SONG Xiaochuan, HUO Xintao, SHI Zongqian, WANG Lijun. Investigation of Vacuum Arc Voltage Characteristics Under Different Axial Magnetic Field Profiles[J]. Plasma Science and Technology, 2010, 12(6): 729-733.
  • Cited by

    Periodical cited type(12)

    1. Jiang, Y., Ma, S., Li, Q. et al. Non-uniform pinching of short-gap intermediate frequency vacuum arc without controlled magnetic field. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113394
    2. Yan, C., An, T., Luo, B. et al. An Improved Black-Box Model for Low-Current AC Arcs in Vacuum Interrupters. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(2): 1030-1037. DOI:10.1109/TDEI.2023.3316154
    3. Tong, Z., Wu, S., Shi, S. et al. 3D Pic-Mcc Simulation of Particles Expansion for Two Kinds of Curved Contact and Butt Contact in the Post-Arc Phase. 2024. DOI:10.1109/ICEPE-ST61894.2024.10792620
    4. Tong, Z., Wu, J., Jiang, X. et al. Study on Intermediate-Frequency Vacuum Arc Recovery Characteristics of Curved Contact With Different Bending Amplitudes. IEEE Transactions on Plasma Science, 2024, 52(9): 4506-4513. DOI:10.1109/TPS.2024.3487347
    5. Ziang, T., Shengxiu, W., Enyao, Q. et al. 3D Pic-Mcc Simulation of Particles Expansion for Straight Curved Contact and Butt Contact in the Post-arc Phase. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-99-7413-9_20
    6. Huang, C., Yin, Y., Liu, S. et al. Study on impact of gap difference on plasma distribution of direct current vacuum circuit breaker with double-break. AIP Advances, 2023, 13(11): 115226. DOI:10.1063/5.0175155
    7. Tong, Z., Shi, S., Wang, X. et al. Research on intermediate-frequency vacuum arc recovery characteristics of curved contact. Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2023. DOI:10.23919/ISDEIV55268.2023.10200597
    8. Tong, Z., Wu, J., Li, K. et al. A Plasma Diagnosis Method for a Vacuum Arc Under Curved Contact. IEEE Transactions on Plasma Science, 2022, 50(9): 2700-2708. DOI:10.1109/TPS.2022.3193610
    9. Yang, J., Shu, F. Closed-loop control design of intermediate frequency modulated lower limb rehabilitation electrical stimulation system based on NARMAX model. 2022. DOI:10.1109/TOCS56154.2022.10016114
    10. Jiang, Y., Wu, J., Li, Q. et al. Influence of metal vapor on post-arc breakdown for intermediate frequency vacuum arc. Vacuum, 2021. DOI:10.1016/j.vacuum.2021.110551
    11. Tong, Z., Wu, J., Chen, J. et al. Characteristics of Vacuum Arc Voltage and Material Transfer with Different Contact Materials. Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2020. DOI:10.1109/ISDEIV46977.2021.9587258
    12. Tong, Z., Wu, J., Li, K. Numerical Simulation of Intermediate-Frequency Vacuum Arc. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.3014373

    Other cited types(0)

Catalog

    Article views (226) PDF downloads (501) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return