Advanced Search+
Jianhua WANG (王健华), Gen CHEN (陈根), Yanping ZHAO (赵燕平), Yuzhou MAO (毛玉周), Shuai YUAN (袁帅), Xinjun ZHANG (张新军), Hua YANG (杨桦), Chengming QIN (秦成明), Yan CHENG (程艳), Yuqing YANG (杨宇晴), Guillaume URBANCZYK, Lunan LIU (刘鲁南), Jian CHENG (程健). Design and test of voltage and current probes for EAST ICRF antenna impedance measurement[J]. Plasma Science and Technology, 2018, 20(4): 45603-045603. DOI: 10.1088/2058-6272/aaa7ea
Citation: Jianhua WANG (王健华), Gen CHEN (陈根), Yanping ZHAO (赵燕平), Yuzhou MAO (毛玉周), Shuai YUAN (袁帅), Xinjun ZHANG (张新军), Hua YANG (杨桦), Chengming QIN (秦成明), Yan CHENG (程艳), Yuqing YANG (杨宇晴), Guillaume URBANCZYK, Lunan LIU (刘鲁南), Jian CHENG (程健). Design and test of voltage and current probes for EAST ICRF antenna impedance measurement[J]. Plasma Science and Technology, 2018, 20(4): 45603-045603. DOI: 10.1088/2058-6272/aaa7ea

Design and test of voltage and current probes for EAST ICRF antenna impedance measurement

Funds: This work was supported by: (1) National Natural Science Foundation of China under grant Nos. 11575237, 11775258, 11675213, 11375235 and 11375236; (2) National key research and development program (grant Nos. 2016YFA0400600 and 2016YFA0400601); (3) International Scientific and Technological Cooperation Project of Anhui (grant No. 1704e1002207); (4) the National Magnetic Confinement Fusion Science Programme of China (grant Nos. 2015GB101001 and 2013GB106001B); (5) JSPSNRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC No. 11261140328).
More Information
  • Received Date: October 09, 2017
  • On the experimental advanced superconducting tokamak (EAST), a pair of voltage and current probes (V/I probes) is installed on the ion cyclotron radio frequency transmission lines to measure the antenna input impedance, and supplement the conventional measurement technique based on voltage probe arrays. The coupling coefficients of V/I probes are sensitive to their sizes and installing locations, thus they should be determined properly to match the measurement range of data acquisition card. The V/I probes are tested in a testing platform at low power with various artificial loads. The testing results show that the deviation of coupling resistance is small for loads RL>2.5 Ω, while the resistance deviations appear large for loads RL<1.5 Ω, which implies that the power loss cannot be neglected at high VSWR. As the factors that give rise to the deviation of coupling resistance calculation, the phase measurement error is the more significant factor leads to deleterious results rather than the amplitude measurement error. To exclude the possible ingredients that may lead to phase measurement error, the phase detector can be calibrated in steady L-mode scenario and then use the calibrated data for calculation under H-mode cases in EAST experiments.
  • [1]
    Zhang J H et al 2017 Nucl. Fusion 57 066030
    [2]
    Stepanov I et al 2013 Fusion Eng. Des. 88 990
    [3]
    Stepanov I et al 2014 AIP Conf. Proc. 1580 275
    [4]
    Stepanov I et al 2015 Nucl. Fusion 55 113003
    [5]
    Wang J H et al 2017 Fusion Eng. Des. 122 196
    [6]
    Zhao Y P et al 2014 Fusion Eng. Des. 89 2642
    [7]
    QinCM et al 2015 AIP Conf. Proc. 1689 040001
    [8]
    Mao Y Z et al 2012 Fusion Sci. Technol. 61 216
    [9]
    Wang P et al 2005 Nucl. Fusion Plasma Phys. 25 278 (in Chinese)
    [10]
    Chen G et al 2016 Fusion Eng. Des. 107 32
    [11]
    Chen G et al 2016 Plasma Sci. Technol. 18 870
    [12]
    QinCM et al 2006 Plasma Sci. Technol. 8 358
    [13]
    Yang Q X et al 2010 Plasma Sci. Technol. 12 488
  • Related Articles

    [1]Yueqiang LI, Bin WU, Chao GAO, Haibo ZHENG, Yushuai WANG, Rihua YAN. Turbulent boundary layer control with DBD plasma actuators[J]. Plasma Science and Technology, 2023, 25(4): 045508. DOI: 10.1088/2058-6272/aca503
    [2]Bin WU (武斌), Chao GAO (高超), Feng LIU (刘峰), Ming XUE (薛明), Yushuai WANG (王玉帅), Borui ZHENG (郑博睿). Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 45501-045501. DOI: 10.1088/2058-6272/aaf2e2
    [3]Haiying WEI (魏海英), Hongge GUO (郭红革), Meili ZHOU (周美丽), Lei YUE (岳蕾), Qiang CHEN (陈强). DBD plasma assisted atomic layer deposition alumina barrier layer on self-degradation polylactic acid film surface[J]. Plasma Science and Technology, 2019, 21(1): 15503-015503. DOI: 10.1088/2058-6272/aae0ee
    [4]Zheng LI (李铮), Zhiwei SHI (史志伟), Hai DU (杜海), Qijie SUN (孙琪杰), Chenyao WEI (魏晨瑶), Xi GENG (耿玺). Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 115504. DOI: 10.1088/2058-6272/aacaf0
    [5]Lu MA (马璐), Xiaodong WANG (王晓东), Jian ZHU (祝健), Shun KANG (康顺). Effect of DBD plasma excitation characteristics on turbulent separation over a hump model[J]. Plasma Science and Technology, 2018, 20(10): 105503. DOI: 10.1088/2058-6272/aacdf0
    [6]Haiying WEI (魏海英), Hongge GUO (郭红革), Lijun SANG (桑利军), Xingcun LI (李兴存), Qiang CHEN (陈强). Study on deposition of Al2O3 films by plasma-assisted atomic layer with different plasma sources[J]. Plasma Science and Technology, 2018, 20(6): 65508-065508. DOI: 10.1088/2058-6272/aaacc7
    [7]Yadong HUANG (黄亚冬), Benmou ZHOU (周本谋). Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator[J]. Plasma Science and Technology, 2018, 20(5): 54021-054021. DOI: 10.1088/2058-6272/aab5bb
    [8]Junkai YAO (姚军锴), Danjie ZHOU (周丹杰), Haibo HE (何海波), Chengjun HE (何承军), Zhiwei SHI (史志伟), Hai DU (杜海). Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators[J]. Plasma Science and Technology, 2017, 19(4): 44002-044002. DOI: 10.1088/2058-6272/aa57f1
    [9]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [10]WANG Yuling (王玉玲), GAO Chao (高超), WU Bin (武斌), HU Xu (胡旭). Simulation of Flow Around Cylinder Actuated by DBD Plasma[J]. Plasma Science and Technology, 2016, 18(7): 768-774. DOI: 10.1088/1009-0630/18/7/12
  • Cited by

    Periodical cited type(9)

    1. Yan, R., Wu, B., Gao, C. et al. Selective control of Poiseuille Rayleigh Bénard flows instabilities by spanwise dielectric-barrier-discharge plasma actuation. Physics of Fluids, 2023, 35(12): 127123. DOI:10.1063/5.0177318
    2. Zheng, B., Liu, Y., Yu, M. et al. Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator. Chinese Physics B, 2023, 32(9): 095203. DOI:10.1088/1674-1056/acae76
    3. Zhang, Y., Gao, C., Wu, B. et al. Dynamic stall flow control with multistage dielectric-barrier discharge actuation under light stall conditions. Physics of Plasmas, 2023, 30(8): 083513. DOI:10.1063/5.0158088
    4. SU, Z., ZONG, H., LIANG, H. et al. Minimizing airfoil drag at low angles of attack with DBD-based turbulent drag reduction methods. Chinese Journal of Aeronautics, 2023, 36(4): 104-119. DOI:10.1016/j.cja.2022.11.019
    5. Xu, Z., Wu, B., Gao, C. et al. Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator. Plasma Science and Technology, 2023, 25(3): 035509. DOI:10.1088/2058-6272/aca18f
    6. Su, Z., Zong, H., Liang, H. et al. Progress and outlook of plasma-based turbulent skin-friction drag reduction | [等离子体湍流摩擦减阻研究进展与展望]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2023, 41(9): 1-19. DOI:10.7638/kqdlxxb-2023.0083
    7. Xu, Z., Wu, B., Gao, C. et al. Numerical simulation of dynamic stall flow control using a multi-dielectric barrier discharge plasma actuation strategy. Physics of Plasmas, 2022, 29(10): 103503. DOI:10.1063/5.0107530
    8. Xue, M., Ni, Z., Gao, C. et al. Deflected Synthetic Jet due to Vortices Induced by a Tri-Electrode Plasma Actuator. AIAA Journal, 2022, 60(6): 3695-3706. DOI:10.2514/1.J061223
    9. Jiang, H., Li, G., Liu, H. et al. Numerical verification of the two-spike-current behavior in the initial stage of plasma formation in a pulsed surface dielectric barrier discharge. Journal of Physics D: Applied Physics, 2021, 54(34): 345201. DOI:10.1088/1361-6463/ac0705

    Other cited types(0)

Catalog

    Article views (233) PDF downloads (508) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return