Citation: | Jianhua WANG (王健华), Gen CHEN (陈根), Yanping ZHAO (赵燕平), Yuzhou MAO (毛玉周), Shuai YUAN (袁帅), Xinjun ZHANG (张新军), Hua YANG (杨桦), Chengming QIN (秦成明), Yan CHENG (程艳), Yuqing YANG (杨宇晴), Guillaume URBANCZYK, Lunan LIU (刘鲁南), Jian CHENG (程健). Design and test of voltage and current probes for EAST ICRF antenna impedance measurement[J]. Plasma Science and Technology, 2018, 20(4): 45603-045603. DOI: 10.1088/2058-6272/aaa7ea |
[1] |
Zhang J H et al 2017 Nucl. Fusion 57 066030
|
[2] |
Stepanov I et al 2013 Fusion Eng. Des. 88 990
|
[3] |
Stepanov I et al 2014 AIP Conf. Proc. 1580 275
|
[4] |
Stepanov I et al 2015 Nucl. Fusion 55 113003
|
[5] |
Wang J H et al 2017 Fusion Eng. Des. 122 196
|
[6] |
Zhao Y P et al 2014 Fusion Eng. Des. 89 2642
|
[7] |
QinCM et al 2015 AIP Conf. Proc. 1689 040001
|
[8] |
Mao Y Z et al 2012 Fusion Sci. Technol. 61 216
|
[9] |
Wang P et al 2005 Nucl. Fusion Plasma Phys. 25 278 (in Chinese)
|
[10] |
Chen G et al 2016 Fusion Eng. Des. 107 32
|
[11] |
Chen G et al 2016 Plasma Sci. Technol. 18 870
|
[12] |
QinCM et al 2006 Plasma Sci. Technol. 8 358
|
[13] |
Yang Q X et al 2010 Plasma Sci. Technol. 12 488
|
[1] | Hua ZHOU, Dan DU, Zhongshi YANG, K. SAITO, Qingxi YANG, Wei ZHANG, Guojian NIU. 3D electromagnetic simulation of the coupling characteristics and double-stub Ferrite tuners impedance matching for EAST ICRH four-strap antenna[J]. Plasma Science and Technology, 2024, 26(11): 114003. DOI: 10.1088/2058-6272/ad68ad |
[2] | Hua YANG, Xinjun ZHANG, Shuai YUAN, Chengming QIN, Wei ZHANG, G. URBANCZYK, Jinping QIAN, Lunan LIU, Gaoxiang WANG, Qingqing CHEN. Physical design and recent experimental results of the new ICRF antenna on EAST[J]. Plasma Science and Technology, 2024, 26(6): 065601. DOI: 10.1088/2058-6272/ad273d |
[3] | Gen CHEN, Yuzhou MAO, Shuai YUAN, Yanping ZHAO, Hua YANG, Xinjun ZHANG, Chengming QIN, Yan CHENG, Yongsheng WANG. Design of improved compact decoupler based on adjustable capacitor for EAST-ICRF antenna[J]. Plasma Science and Technology, 2022, 24(1): 015602. DOI: 10.1088/2058-6272/ac3806 |
[4] | Zhen PENG (彭振), Gen CHEN (陈根), Jianhua WANG (王健华), Yanping ZHAO (赵燕平), Yuzhou MAO (毛玉周). Design of a multi-voltage probe system for ICRF antenna coupling resistance measurement on EAST[J]. Plasma Science and Technology, 2020, 22(10): 105601. DOI: 10.1088/2058-6272/aba186 |
[5] | Yuqing YANG (杨宇晴), Xinjun ZHANG (张新军), Yanping ZHAO (赵燕平), Chengming QIN (秦成明), Yan CHENG (程艳), Yuzhou MAO (毛玉周), Hua YANG (杨桦), Jianhua WANG (王健华), Shuai YUAN (袁帅), Lei WANG (王磊), Songqing JU (琚松青), Gen CHEN (陈根), Xu DENG, (邓旭), Kai ZHANG (张开), Baonian WAN (万宝年), Jiangang LI (李建刚), Yuntao SONG (宋云涛), Xianzu GONG (龚先祖), Jinping QIAN (钱金平), Tao ZHANG (张涛). Recent ICRF coupling experiments on EAST[J]. Plasma Science and Technology, 2018, 20(4): 45102-045102. DOI: 10.1088/2058-6272/aaa599 |
[6] | Qingxi YANG (杨庆喜), Wei SONG (宋伟), Qunshan DU (杜群山), Yuntao SONG (宋云涛), Chengming QIN (秦成明), Xinjun ZHANG (张新军), Yanping ZHAO (赵燕平). Thermal analysis and optimization of the EAST ICRH antenna[J]. Plasma Science and Technology, 2018, 20(2): 25603-025603. DOI: 10.1088/2058-6272/aa9609 |
[7] | Yonggang WANG (王永刚), Liqing TONG (童立青), Kefu LIU (刘克富). Impedance matching for repetitive high voltage all-solid-state Marx generator and excimer DBD UV sources[J]. Plasma Science and Technology, 2017, 19(6): 64002-064002. DOI: 10.1088/2058-6272/aa6153 |
[8] | DU Dan (杜丹), GONG Xueyu (龚学余), YIN Lan (尹岚), XIANG Dong (向东), LI Jingchun (李景春). Theoretical Analysis of Triple Liquid Stub Tuner Impedance Matching for ICRH on Tokamaks[J]. Plasma Science and Technology, 2015, 17(12): 1078-1082. DOI: 10.1088/1009-0630/17/12/17 |
[9] | QIN Chengming (秦成明), ZHANG Xinjun (张新军), ZHAO Yanping (赵燕平), et al.. Electromagnetic Analysis of the EAST 4-Strap ICRF Antenna with HFSS Cod[J]. Plasma Science and Technology, 2015, 17(2): 167-172. DOI: 10.1088/1009-0630/17/2/12 |
[10] | YANG Qingxi, SONG Yuntao, WU Songtao, ZHAO Yanping. Design of the Vacuum Feedthrough for the EAST ICRF Antenna[J]. Plasma Science and Technology, 2011, 13(2): 252-256. |
1. | Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045 | |
2. | Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931 | |
3. | Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667 | |
4. | Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866 | |
5. | Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3 | |
6. | Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c | |
7. | Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56 | |
8. | Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582 | |
9. | Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927 | |
10. | Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696 | |
11. | Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002 | |
12. | Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716 | |
13. | Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274 | |
14. | Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984 | |
15. | Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622 | |
16. | Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb | |
17. | Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844 | |
18. | Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292 | |
19. | Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562 | |
20. | Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433 | |
21. | Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502 | |
22. | Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111 | |
23. | Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c |